Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neurological dysfunctions in mice expressing different levels of the Q/R site–unedited AMPAR subunit GluR–B

Abstract

We generated mouse mutants with targeted AMPA receptor (AMPAR) GluR–B subunit alleles, functionally expressed at different levels and deficient in Q/R–site editing. All mutant lines had increased AMPAR calcium permeabilities in pyramidal neurons, and one showed elevated macroscopic conductances of these channels. The AMPAR–mediated calcium influx induced NMDA–receptor–independent long–term potentiation (LTP) in hippocampal pyramidal cell connections. Calcium–triggered neuronal death was not observed, but mutants had mild to severe neurological dysfunctions, including epilepsy and deficits in dendritic architecture. The seizure–prone phenotype correlated with an increase in the macroscopic conductance, as independently revealed by the effect of a transgene for a Q/R–site–altered GluR–B subunit. Thus, changes in GluR–B gene expression and Q/R site editing can affect critical architectural and functional aspects of excitatory principal neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of GluR–B(Q)–expressing mice.
Figure 2: Calcium permeability and macroscopic conductance of AMPARs in pyramidal neurons.
Figure 3: NMDAR–independent LTP (a) Electrode arrangement.
Figure 4: Phenotypes and structural deficits in neuronal architecture.
Figure 5: Expression and effect of a GluR–B(N) transgene.

Similar content being viewed by others

References

  1. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  2. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long–term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  3. Choi, D. W. Calcium: still center–stage in hypoxic–ischemic neuronal death. Trends Neurosci. 18, 58–60 (1995).

    Article  CAS  Google Scholar 

  4. Rothstein, J. D. & Kuncl, R. W. Neuroprotective strategies in a model of chronic glutamate–mediated motor neuron toxicity. J. Neurochem. 65, 643–651 (1995).

    Article  CAS  Google Scholar 

  5. Hollmann, M. & Heinemann, S. F. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  CAS  Google Scholar 

  6. Geiger, J. R. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Article  CAS  Google Scholar 

  7. Jonas, P. & Burnashev, N. Molecular mechanisms controlling calcium entry through AMPA–type glutamate receptor channels. Neuron 15, 987–990 (1995).

    Article  CAS  Google Scholar 

  8. Hume, R. I., Dingledine, R. & Heinemann, S. F. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028–1031 (1991).

    Article  CAS  Google Scholar 

  9. Burnashev, N., Monyer, H., Seeburg, P. H. & Sakmann, B. Divalent cation permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8, 189–198 (1992).

    Article  CAS  Google Scholar 

  10. Sommer, B., Köhler, M., Sprengel, R. & Seeburg, P. H. RNA editing in brain controls a determinant of ion flow in glutamate–gated channels. Cell 67, 11–19 (1991).

    Article  CAS  Google Scholar 

  11. Seeburg, P.H., Higuchi, M. & Sprengel, R. RNA editing of brain glutamate receptor channels: mechanisms and physiology. Brain Res. Rev. 26, 217–229 (1998).

    Article  CAS  Google Scholar 

  12. Higuchi, M. et al. RNA editing of AMPA receptor subunit GluR–B: a base–paired intron–exon structure determines position and efficiency. Cell 75, 1361–1370 (1993).

    Article  CAS  Google Scholar 

  13. Brusa, R. et al. Early–onset epilepsy and postnatal lethality associated with an editing–deficient GluR–B allele in mice. Science 270, 1677–1680 (1995).

    Article  CAS  Google Scholar 

  14. Jia, Z. et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17, 945–956 (1996).

    Article  CAS  Google Scholar 

  15. Wenthold, R. J., Petralia, R. S., Blahos, J. II & Niedzielski, A. S. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16, 1982–1989 (1996).

    Article  CAS  Google Scholar 

  16. Dong, H. et al. GRIP: a synaptic PDZ domain–containing protein that interacts with AMPA receptors. Nature 386, 279–284 (1997).

    Article  CAS  Google Scholar 

  17. O'Brien, R. J., Lau, L.–F. & Huganir, R. L. Molecular mechanisms of glutamate receptor clustering at excitatory synapses. Curr. Opin. Neurobiol. 8, 364–369 (1998).

    Article  CAS  Google Scholar 

  18. Lin, J. W. & Sheng, M. NSF and AMPA receptors get physical. Neuron 21, 267–270 (1998).

    Article  CAS  Google Scholar 

  19. Swanson, G. T., Kamboj, S. K. & Cull–Candy, S. G. Single–channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17, 58–69 (1997).

    Article  CAS  Google Scholar 

  20. Swanson, G. T., Feldmeyer, D., Kaneda, M. & Cull–Candy, S. G. Effect of RNA editing and subunit co–assembly on single–channel properties of recombinant kainate receptors. J. Physiol. (Lond.) 492, 129–142 (1996).

    Article  CAS  Google Scholar 

  21. Mosbacher, J. et al. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266, 1059–1062 (1994).

    Article  CAS  Google Scholar 

  22. Lomeli, H. et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266, 1709–1713 (1994).

    Article  CAS  Google Scholar 

  23. Burnashev, N. Calcium permeability of glutamate–gated channels in the central neurons system. Curr. Opin. Neurobiol. 6, 311–317 (1996).

    Article  CAS  Google Scholar 

  24. Washburn, M. S., Numberger, M., Zhang, S. & Dingledine, R. Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J. Neurosci. 17, 9393–9406 (1997).

    Article  CAS  Google Scholar 

  25. Schwenk, F., Baron, U. & Rajewsky, K. A cre–transgenic mouse strain for the ubiquitous deletion of loxP–flanked gene segments including deletion in germ cells. Nucl. Acids Res. 23, 5080–5081 (1995).

    Article  CAS  Google Scholar 

  26. Nagy, A. et al. Dissecting the role of N–myc in development using a single targeting vector to generate a series of alelles. Curr. Biol. 8, 661–664 (1998).

    Article  CAS  Google Scholar 

  27. Burnashev, N., Zhou, Z., Neher, N. & Sakmann, B. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. (Lond.) 485, 403–418 (1995).

    Article  CAS  Google Scholar 

  28. Andersen, P., Sundberg, S. H., Sveen, O. & Wigström, H. Specific long–lasting potentiation of synaptic transmission in hippocampal slices. Nature 266, 736–737 (1977).

    Article  CAS  Google Scholar 

  29. Kamal, A., Biessels, G. J., Gispen, W. H. & Urban, I. J. Increasing age reduces expression of long–term depression and dynamic range of transmission plasticity in CA1 field of the rat hippocampus. Neuroscience 83, 707–715 (1998).

    Article  CAS  Google Scholar 

  30. Gu, J. G., Albuquerque, C., Lee, C. J. & MacDermott, A. B. Synaptic strengthening through activation of Ca2+ permeable AMPA receptors. Nature 381, 793–796 (1996).

    Article  CAS  Google Scholar 

  31. Mahanty, N. K. & Sah, P. Calcium–permeable AMPA receptors mediate long–term potentiation in interneurons in the amygdala. Nature 394, 683–687 (1998).

    Article  CAS  Google Scholar 

  32. Dunwiddie, T. V. & Lynch, G. The relationship between extracellular calcium concentrations and the induction of hippocampal long–term potentiation. Brain Res. 169, 103–110 (1979).

    Article  CAS  Google Scholar 

  33. Wigström, H., Swann, J. W. & Andersen, P. Calcium dependency of synaptic long–lasting potentiation in the hippocampal slice. Acta Physiol. Scand. 105, 126–128 (1979).

    Article  Google Scholar 

  34. Horikawa, K. & Armstrong, W. E. A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J. Neurosci. Methods 25, 1–11 (1988).

    Article  CAS  Google Scholar 

  35. Kask, K. et al. The AMPA receptor subunit GluR–B in its Q/R site–unedited form is not essential for brain development and function. Proc. Natl. Acad. Sci. USA (in press).

  36. Kyrozis, A., Goldstein, P. A., Heath, M. J. S. & MacDermott, A. B. Calcium entry through a subpopulation of AMPA receptors desensitized neighboring NMDA receptors in rat dorsal horn. J. Physiol. (Lond.) 485, 373–381 (1995).

    Article  CAS  Google Scholar 

  37. Kharazia, V. N., Phend, K. D., Rustioni, A. & Weinberg, R. J. EM colocalization of AMPA and NMDA receptor subunits at synapses in rat cerebral cortex. Neurosci. Lett. 210, 37–40 (1996).

    Article  CAS  Google Scholar 

  38. Braun, R. E. et al. Infertility in male transgenic mice: disruption of sperm development by HSV–tk expression in postmeiotic germ cells. Biol. Repr. 43, 684–693 (1990).

    Article  CAS  Google Scholar 

  39. Danielson, P. E. et al. p1B15: a cDNA clone of the rat mRNA encoding cyclophilin. DNA 7, 261–267 (1988).

    Article  CAS  Google Scholar 

  40. Wisden, W. & Morris, B. J. in In situ Hybridization Protocols for the Brain (eds Wisden, W. & Morris, B. J.) 9–34 (Academic Press,San Diego, 1994).

    Google Scholar 

  41. Myers, S. J. et al. Transcriptional regulation of the GluR2 gene: neural–specific expression, multiple promoters, and regulatory elements. J. Neurosci. 18, 6723–6739 (1998).

    Article  CAS  Google Scholar 

  42. Köhler, M., Kornau, H.–C. & Seeburg, P. H. The organization of the gene for the functionally dominant alpha–amino–3–hydroxy–5–methylisoxazole–4–propionic acid receptor subunit GluR–B. J. Biol. Chem. 269, 17367–17370 (1994).

    PubMed  Google Scholar 

  43. Sommer, B. et al. Flip and flop: a cell–specific functional switch in glutamate–operated channels of the CNS. Science 249, 1580–1585 (1990).

    Article  CAS  Google Scholar 

  44. Chen, E. Y. et al. The human growth hormone locus: nucleotide sequence, biology, and evolution. Genomics 4, 479–497 (1989).

    Article  CAS  Google Scholar 

  45. Sprengel, R. et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92, 279–289 (1998).

    Article  CAS  Google Scholar 

  46. Petralia, R. S., Wang, Y. X., Mayat, E. & Wenthold, R. J. Glutamate receptor subunit 2–selective antibody shows a differential distribution of calcium–impermeable AMPA receptors among populations of neurons. J. Comp. Neurol. 385, 456–476 (1997).

    Article  CAS  Google Scholar 

  47. Cases, O. et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A–deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Sakmann and P. Andersen for discussions, R.J. Wenthold for antibodies, F. Schwenk for the deleter mouse, R. Pfeffer, A. Herold, M. Lang for technical assistance and M. Belovska, M. Kosma, S. Kranz for dendritic tree analysis. K.K. was recipient of an EMBO long–term fellowship. H.–C.K. was supported by Boehringer Ingelheim. This work was funded, in part, by grants from HFSP, the Volkswagenstiftung, the German Chemical Society and an unrestricted grant from Bristol–Meyers Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Sprengel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldmeyer, D., Kask, K., Brusa, R. et al. Neurological dysfunctions in mice expressing different levels of the Q/R site–unedited AMPAR subunit GluR–B. Nat Neurosci 2, 57–64 (1999). https://doi.org/10.1038/4561

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4561

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing