Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Miniature synaptic events maintain dendritic spines via AMPA receptor activation

Abstract

We investigated the influence of synaptically released glutamate on postsynaptic structure by comparing the effects of deafferentation, receptor antagonists and blockers of glutamate release in hippocampal slice cultures. CA1 pyramidal cell spine density and length decreased after transection of Schaffer collaterals and after application of AMPA receptor antagonists or botulinum toxin to unlesioned cultures. Loss of spines induced by lesion or by botulinum toxin was prevented by simultaneous AMPA application. Tetrodotoxin did not affect spine density. Synaptically released glutamate thus exerts a trophic effect on spines by acting at AMPA receptors. We conclude that AMPA receptor activation by spontaneous vesicular glutamate release is sufficient to maintain dendritic spines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spine classification.
Figure 2: Changes in dendritic spine shape and density after deafferentation or treatment with glutamate receptor antagonists.
Figure 3: AMPA prevents lesion-induced spine loss.
Figure 4: Botulinum toxin decreases spine density, but TTX does not.

Similar content being viewed by others

References

  1. Malenka, R. C. & Nicoll, R. A. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci. 16, 521–527 (1993).

    Article  CAS  Google Scholar 

  2. Calverley, R. K. S. & Jones, D. G. Contributions of dendritic spines and perforated synapses to synaptic plasticity. Brain Res. Rev. 15, 215–249 (1990).

    Article  CAS  Google Scholar 

  3. Edwards, F. A. Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation. Physiol. Rev. 75, 759–787 (1995).

    Article  CAS  Google Scholar 

  4. Lisman, J. E. & Harris, K. M. Quantal analysis and synaptic anatomy—integrating two views of hippocampal plasticity. Trends Neurosci. 16, 141–147 (1993).

    Article  CAS  Google Scholar 

  5. Westrum, L. E. & Blackstad, T. W. An electron microscopic study of the stratum radiatum of the rat hippocampus (regio superior, CA1) with particular emphasis on synaptology. J. Comp. Neurol. 119, 281–309 (1962).

    Article  CAS  Google Scholar 

  6. Peters, A. & Kaiserman-Abramof, I. R. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am. J. Anat. 127, 321–355 (1970).

    Article  CAS  Google Scholar 

  7. Harris, K. M. & Stevens, J. K. Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    Article  CAS  Google Scholar 

  8. Harris, K. M., Jensen, F. E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705 (1992).

    Article  CAS  Google Scholar 

  9. Wickens, J. Electrically coupled but chemically isolated synapses: dendritic spines and calcium in a rule for synaptic modification. Prog. Neurobiol. 31, 507–528 (1988).

    Article  CAS  Google Scholar 

  10. Moser, M.-B., Trommald, M. & Andersen, P. An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc. Natl. Acad. Sci. USA 91, 12673–12675 (1994).

    Article  CAS  Google Scholar 

  11. Horn, G., Bradley, P. & McCabe, B. J. Changes in the structure of synapses associated with learning. J. Neurosci. 5, 3161– 3168 (1985).

    Article  CAS  Google Scholar 

  12. Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    Article  CAS  Google Scholar 

  13. Sorra, K. E. & Harris, K. M. Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1. J. Neurosci. 18, 658–671 (1998).

    Article  CAS  Google Scholar 

  14. Fiala, J. C., Feinberg, M., Popov, V. & Harris, K. M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

    Article  CAS  Google Scholar 

  15. Goldowitz, D., Scheff, S. W. & Cotman, C. W. The specificity of reactive synaptogenesis: a comparative study in the adult rat hippocampal formation. Brain Res. 170, 427–441 (1979).

    Article  CAS  Google Scholar 

  16. Poulain, B., Molgó, J. & Thesleff, S. in Clostridial Neurotoxins (ed. Montecucco, C.) 243–255 (Springer, Berlin, 1995).

    Book  Google Scholar 

  17. Capogna, M., McKinney, R. A., O'Connor, V., Gähwiler, B. H. & Thompson, S. M. Ca2+ or Sr2+ partially rescue synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin. J. Neurosci. 17, 7190– 7202 (1997).

    Article  CAS  Google Scholar 

  18. Trommald, M., Jensen, V. & Andersen, P. Analysis of dendritic spines in rat CA1 pyramidal cells intracellularly filled with a fluorescent dye. J. Comp. Neurol. 353, 260–274 ( 1995).

    Article  CAS  Google Scholar 

  19. McKinney, R. A., Debanne, D., Gähwiler, B. H. & Thompson, S. M. Lesion-induced axonal sprouting and hyperexcitability in the hippocampus in vitro: Implications for the genesis of posttraumatic epilepsy. Nat. Med. 3, 990–996 ( 1997).

    Article  CAS  Google Scholar 

  20. Parnavelas, J. G., Lynch, G., Brecha, N., Cotman, C. W. & Globus, A. Spine loss and regrowth in hippocampus following deafferentation. Nature 248, 71–73 (1974).

    Article  CAS  Google Scholar 

  21. Forster, E., Otten, U. & Frotscher, M. Developmental neurotrophin expression in slice cultures of rat hippocampus. Neurosci. Lett. 155, 216–219 (1993).

    Article  CAS  Google Scholar 

  22. Lømo, T. & Rosenthal, J. Control of ACh sensitivity by muscle activity in the rat. J. Physiol. (Lond.) 221, 493–513 ( 1972).

    Article  Google Scholar 

  23. Gerfin-Moser, A., Grogg, F., Rietschin, L., Thompson, S. M. & Streit, P. Alterations in glutamate but not GABAA receptor subunit expression as a consequence of epileptiform activity in vitro. Neuroscience 67, 849–865 (1995).

    Article  CAS  Google Scholar 

  24. Hollmann, M., Hartley, M. & Heinemann, S. Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252, 851–853 (1991).

    Article  CAS  Google Scholar 

  25. Wang, Y., Small, D. L., Stanimirovic, D. B., Morley, P. & Durkin, J. P. AMPA receptor-mediated regulation of a Gi-protein in cortical neurons. Nature 389, 502–504 (1997).

    Article  CAS  Google Scholar 

  26. Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427– 434 (1995).

    Article  CAS  Google Scholar 

  27. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 ( 1995).

    Article  CAS  Google Scholar 

  28. Hayashi, K. et al. Modulatory role of drebrin on the cytoskeleton within dendritic spines in the rat cerebral cortex. J. Neurosci. 16, 7161–7170 (1996).

    Article  CAS  Google Scholar 

  29. Woolley, C. S. & McEwen, B. S. Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. J. Neurosci. 14, 7680– 7687 (1994).

    Article  CAS  Google Scholar 

  30. Cooper, M. W. & Smith, S. J. A real-time analysis of growth cone-target cell interactions during the formation of stable contacts between hippocampal neurons in culture. J. Neurobiol. 23, 814–828 (1992).

    Article  CAS  Google Scholar 

  31. Papa, M., Bundman, M. C., Greenberger, V. & Segal, M. Development and morphology of dendritic spines in primary cultures of hippocampal neurons. J. Neurosci. 15, 1– 11 (1995).

    Article  CAS  Google Scholar 

  32. Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

    Article  CAS  Google Scholar 

  33. Jonas, P. & Sakmann, B. Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. J. Physiol. (Lond.) 455, 143–171 (1992).

    Article  CAS  Google Scholar 

  34. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  Google Scholar 

  35. Gähwiler, B. H., Thompson, S. M., Audinat, E. & Robertson, R. T. in Culturing Nerve Cells (eds Banker, G. & Goslin, K.) 379–411 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  36. Rusakov, D. A. & Stewart, M. G. Quantification of dendritic spine populations using image analysis and a tilting dissector. J. Neurosci. Methods 60, 11– 21 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Heeb, L. Rietschin and R. Schöb for technical assistance, P. Streit, J.-C. Poncer, M. Scanziani and Y. Fischer for discussions and for reading the manuscript. We thank H. Bigalke for the gift of BoNT/A. Supported by the Eric Slack-Gyr and Swiss National Science Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Anne McKinney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinney, R., Capogna, M., Dürr, R. et al. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat Neurosci 2, 44–49 (1999). https://doi.org/10.1038/4548

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing