Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prototype-referenced shape encoding revealed by high-level aftereffects

Abstract

We used high-level configural aftereffects induced by adaptation to realistic faces to investigate visual representations underlying complex pattern perception. We found that exposure to an individual face for a few seconds generated a significant and precise bias in the subsequent perception of face identity. In the context of a computationally derived 'face space,' adaptation specifically shifted perception along a trajectory passing through the adapting and average faces, selectively facilitating recognition of a test face lying on this trajectory and impairing recognition of other faces. The results suggest that the encoding of faces and other complex patterns draws upon contrastive neural mechanisms that reference the central tendency of the stimulus category.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Examples of stimuli and the multidimensional face space.
Figure 2: Testing protocol.
Figure 3: Sensitivity to face identity with and without previous adaptation to an anti-face.
Figure 4: Face identification performance with non-matching adapting and test faces.
Figure 5: Effect of face inversion.
Figure 6: Translation invariance of face adaptation effects.

References

  1. Logothetis, N. K. & Pauls, J. Psychophysical and physiological evidence for viewer-centered object representations in the primate. Cereb. Cortex 5, 270–288 (1995).

    CAS  Article  Google Scholar 

  2. Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P. & Gore, J. C. Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nat. Neurosci. 2, 568–573 (1999).

    CAS  Article  Google Scholar 

  3. Perrett, D. I., Rolls, E. T. & Caan, W. Visual neurones responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47, 329–342 (1982).

    CAS  Article  Google Scholar 

  4. Desimone, R., Albright, T. D., Gross, C. G. & Bruce, C. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4, 2051–2062 (1984).

    CAS  Article  Google Scholar 

  5. Logothetis, N. K., Guggenberger, H., Peled, S. & Pauls, J. Functional imaging of the monkey brain. Nat. Neurosci. 2, 555–562 (1999).

    CAS  Article  Google Scholar 

  6. Ojemann, J. G., Ojemann, G. A. & Lettich, E. Neuronal activity related to faces and matching in human right nondominant temporal cortex. Brain 115, 1–13 (1992).

    Article  Google Scholar 

  7. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    CAS  Article  Google Scholar 

  8. Valentine, T. A unified account of the effects of distinctiveness, inversion, and race in face recognition. Q. J. Exp. Psychol. A 43A, 161–204 (1991).

    Article  Google Scholar 

  9. Rhodes, G., Carey, S., Byatt, G. & Proffitt, F. Coding spatial variations in faces and simple shapes: a test of two models. Vision Res. 38, 2307–2321 (1998).

    CAS  Article  Google Scholar 

  10. Cabeza, R., Bruce, V., Kato, T. & Oda, M. The prototype effect in face recognition: Extension and limits. Mem. Cognit. 27, 139–151 (1999).

    CAS  Article  Google Scholar 

  11. O'Toole, A. J., Vetter, T., Nikolaus, T. F. & Bulthoff, H. H. Sex classification is better with three-dimensional head structure than with image intensity information. Perception 26, 75–84 (1997).

    CAS  Article  Google Scholar 

  12. O'Toole, A. J., Deffenbacher, K. A., Valentin, D. & Abdi, H. Structural aspects of face recognition and the other-race effect. Mem. Cognit. 22, 208–224 (1994).

    CAS  Article  Google Scholar 

  13. Benson, P. J. & Perrett, D. I. Visual processing of facial distinctiveness. Perception 23, 75–93 (1994).

    CAS  Article  Google Scholar 

  14. Deffenbacher, K. A., Vetter, T., Johanson, J. & O'Toole, A. J. Facial aging, attractiveness, and distinctiveness. Perception 27, 1233–1244 (1998).

    CAS  Article  Google Scholar 

  15. Rhodes, G., Brennan, S. & Carey, S. Identification and ratings of caricatures: implications for mental representations of faces. Cognit. Psychol. 19, 473–497 (1987).

    CAS  Article  Google Scholar 

  16. Stevenage, S. V. Can caricatures really produce distinctiveness effects? Br. J. Psychol. 86, 127–146 (1995).

    Article  Google Scholar 

  17. Blanz, V., O'Toole, A. J., Vetter, T., & Wild, H. A. On the other side of the mean: the perception of dissimilarity in human faces. Perception 29, 885–892 (2000).

    CAS  Article  Google Scholar 

  18. Webster, M. A. & MacLin, O. H. Figural aftereffects in the perception of faces. Psychon. Bull. Rev. 6, 647–653 (1999).

    CAS  Article  Google Scholar 

  19. Koehler, W. & Wallach, H. Figural after-effects: an investigation of visual processes. Proc. Am. Phil. Soc. 88, 269–357 (1944).

    Google Scholar 

  20. Blakemore, C. & Campbell, F. W. On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. (Lond.) 203, 237–260 (1969).

    CAS  Article  Google Scholar 

  21. Mather, G., Verstraten, F. & Anstis, S. The Motion Aftereffect: A Modern Perspective. (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  22. Blanz, V. & Vetter, T. in 1999 Symposium on Interactive 3D Graphics—Proceedings of SIGGRAPH'99. 187–194 (ACM Press, New York, 1999)

    Google Scholar 

  23. Posner, M. I. & Keele, S. W. Retention of abstract ideas. J. Exp. Psychol. 83, 394–308 (1970).

    Article  Google Scholar 

  24. Posner, M. I. & Keele, S. W. On the genesis of abstract ideas. J. Exp. Psychol. 77, 353–363 (1968).

    CAS  Article  Google Scholar 

  25. Ashby, F. G. & Maddix, W. T. Relations between prototype, exemplar, and decision bound models of categorization. J. Math. Psych. 37, 372–400 (1993).

    Article  Google Scholar 

  26. Nosofsky, R. M. Tests of an exemplar model for relating perceptual classification and recognition memory. J. Exp. Psychol. Hum. Percept. Perform. 17, 3–27 (1991).

    CAS  Article  Google Scholar 

  27. Estes, W. K. Classification and Cognition. (Oxford University Press, Oxford, 1994).

    Book  Google Scholar 

  28. Lewis, M. B. & Johnston, R. A. A unified account of the effects of caricaturing faces. Vis. Cognit. 6, 1–41 (1999).

    Article  Google Scholar 

  29. Logothetis, N. K., Pauls, J. & Poggio, T. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5, 552–563 (1995).

    CAS  Article  Google Scholar 

  30. Ito, M., Tamura, H., Fujita, I. & Tanaka, K. Size and position invariance of neuronal responses in monkey inferotemporal cortex. J. Neurophysiol. 73, 218–226 (1995).

    CAS  Article  Google Scholar 

  31. Suzuki, S. & Cavanagh, P. A shape-contrast effect for briefly presented stimuli. J. Exp. Psychol. Hum. Percept. Perform. 24, 1315–1341 (1998).

    CAS  Article  Google Scholar 

  32. Yamane, S., Kaji, S. & Kawano, K. What facial features activate face neurons in the inferotemporal cortex of the monkey? Exp. Brain Res. 73, 209–214 (1988).

    CAS  Article  Google Scholar 

  33. Sugase, Y., Yamane, S., Ueno, S. & Kawano, K. Global and fine information coded by single neurons in the temporal visual cortex. Nature 400, 869–873 (1999).

    CAS  Article  Google Scholar 

  34. Hasselmo, M. E., Rolls, E. T. & Baylis, G. C. The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behav. Brain Res. 32, 203–218 (1989).

    CAS  Article  Google Scholar 

  35. Young, M. P. & Yamane, S. Sparse population coding of faces in the inferotemporal cortex. Science 256, 1327–1331 (1992).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank N. Logothetis, S. Edelman, M. Wenger and H. Abdi for comments on the manuscript and S. Treue for discussion regarding the project. We also thank U. Helmich and M. Sauer for help conducting the experiments, and N. Bartolozzi and C. Moya for technical assistance. Finally, we acknowledge the support of the Max Planck Institute for Biological Cybernetics in the development of stimuli. This work was supported by the Max Planck Society. In addition, A.J.O. was supported by the National Institute of Standards and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Leopold.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leopold, D., O'Toole, A., Vetter, T. et al. Prototype-referenced shape encoding revealed by high-level aftereffects. Nat Neurosci 4, 89–94 (2001). https://doi.org/10.1038/82947

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82947

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing