Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons


In contrast to peripheral nerves, damaged axons in the mammalian brain and spinal cord rarely regenerate. Peripheral nerve injury stimulates neuronal expression of many genes that are not generally induced by CNS lesions, but it is not known which of these genes are required for regeneration. Here we show that co-expressing two major growth cone proteins, GAP-43 and CAP-23, can elicit long axon extension by adult dorsal root ganglion (DRG) neurons in vitro. Moreover, this expression triggers a 60-fold increase in regeneration of DRG axons in adult mice after spinal cord injury in vivo. Replacing key growth cone components, therefore, could be an effective way to stimulate regeneration of CNS axons.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: GAP-43 and CAP-23 increase the propensity of adult neurons for axon growth in vitro.
Figure 2: Combined expression of GAP-43 and CAP-23 triggers an elongating mode of axon extension.
Figure 3: Stepwise induction of axon elongation by GAP-43 and CAP-23.
Figure 4: Expression of GAP-43 and CAP-23 and regeneration of spinal axons by large mechanosensory DRG neurons of transgenic mice in vivo.
Figure 5: Replacement of GAP-43 and CAP-23 permits regeneration of spinal sensory axons in vivo.


  1. 1

    Fidler, P. S. et al. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J. Neurosci. 19, 8778–8788 (1999).

    CAS  Article  Google Scholar 

  2. 2

    Goldberg, J. L. & Barres, B. A. Nogo in nerve regeneration. Nature 403, 369–370 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Chen, M. S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Qiu, J., Cai, D. & Filbin, M. T. Glial inhibition of nerve regeneration in the mature mammalian CNS. Glia 29, 166–174 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Davies, S. J., Goucher, D. R., Doller, C. & Silver, J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J. Neurosci. 19, 5810–5822 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Skene, J. H. P. & Willard, M. Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. J. Cell Biol. 89, 96–103 (1981).

    CAS  Article  Google Scholar 

  7. 7

    Skene, J. H. P. Axonal growth-associated proteins. Annu. Rev. Neurosci. 12, 127–156 (1989).

    CAS  Article  Google Scholar 

  8. 8

    Caroni, P. Intrinsic neuronal determinants that promote axonal sprouting and elongation. Bioessays 19, 767–775 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Kalil, K. & Skene, J. H. P. Elevated synthesis of an axonally transported protein correlates with axon outgrowth in normal and injured pyramidal tracts. J. Neurosci. 6, 2563–2570 (1986).

    CAS  Article  Google Scholar 

  10. 10

    Doster, S. K., Lozano, A. M., Aguayo, A. J. & Willard, M. B. Expression of the growth-associated protein GAP-43 in adult rat retinal ganglion cells following axon injury. Neuron 6, 1–13 (1991).

    Article  Google Scholar 

  11. 11

    Schreyer, D. J. & Skene, J. H. P. Injury-associated induction of GAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons. J. Neurobiol. 24, 959–970 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Fernandes, K. J., Fan, D. P., Tsui, B. J., Cassar, S. L. & Tetzlaff, W. Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP-43, tubulins, and neurofilament-M. J. Comp. Neurol. 414, 495–510 (1999).

    CAS  Article  Google Scholar 

  13. 13

    David, S. & Aguayo, A. J. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214, 931–933 (1981).

    CAS  Article  Google Scholar 

  14. 14

    Richardson, P. M., Issa, V. M. K. & Aguayo, A. J. Regeneration of long spinal axons in the rat. J. Neurocytol. 13, 165–182 (1984).

    CAS  Article  Google Scholar 

  15. 15

    So, K.-F. & Aguayo, A. J. Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats. Brain Res. 328, 349–354 (1985).

    CAS  Article  Google Scholar 

  16. 16

    Friedman, B. & Aguayo, A. J. Injured neurons in the olfactory bulb of the adult rat grow axons along grafts of peripheral nerves. J. Neurosci. 5, 1616–1625 (1985).

    CAS  Article  Google Scholar 

  17. 17

    Campbell, G., Anderson, P. N., Turmaine, M. & Lieberman, A. R. GAP-43 in the axons of mammalian CNS neurons regenerating into peripheral nerve grafts. Exp. Brain Res. 87, 67–74 (1991).

    CAS  Article  Google Scholar 

  18. 18

    Schaden, H., Stuermer, C. A. O. & Bähr, M. GAP-43 immunoreactivity and axon regeneration in retinal ganglion cells of the rat. J. Neurobiol. 25, 1570–1578 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Chong, M. S. et al. GAP-43 expression in primary sensory neurons following central axotomy. J. Neurosci. 14, 4375–4384 (1994).

    CAS  Article  Google Scholar 

  20. 20

    Richardson, P. M. & Issa, V. M. K. Peripheral injury enhances central regeneration of primary sensory neurons. Nature 309, 791–793 (1984).

    CAS  Article  Google Scholar 

  21. 21

    Neumann, S. & Woolf, C. J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Meiri, K. F., Saffell, J. L., Walsh, F. S. & Doherty, P. Neurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43 (GAP-43) function and is associated with GAP-43 phosphorylation in growth cones. J. Neurosci. 18, 10429–10437 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Aigner, L. & Caroni, P. Absence of persistent spreading, branching, and adhesion of GAP-43-depleted growth cones. J. Cell Biol. 128, 647–660 (1995).

    CAS  Article  Google Scholar 

  24. 24

    Strittmatter, S. M., Fankhauser, C., Huang, P. L., Mashimo, H. & Fishman, M. C. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell 80, 445–452 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Maier, D. L. et al. Disrupted cortical map and absence of cortical barrels in growth-associated protein (GAP)-43 knockout mice. Proc. Natl. Acad. Sci. USA 96, 9397–9402 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Zhu, Q. & Julien, J. P. A key role for GAP-43 in the retinotectal topographic organization. Exp. Neurol. 155, 228–242 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Caroni, P., Aigner, L. & Schneider, C. Intrinsic neuronal determinants locally regulate extrasynaptic and synaptic growth at the adult neuromuscular junction. J. Cell Biol. 136, 679–692 (1997).

    CAS  Article  Google Scholar 

  28. 28

    Buffo, A. et al. Targeted overexpression of the neurite growth-associated protein B-50/GAP-43 in cerebellar Purkinje cells induces sprouting after axotomy but not axon regeneration into growth-permissive transplants. J. Neurosci. 17, 8778–8791 (1997).

    CAS  Article  Google Scholar 

  29. 29

    Smith, D. S. & Skene, J. H. P. A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth. J. Neurosci. 17, 646–658 (1997).

    CAS  Article  Google Scholar 

  30. 30

    Aigner, L. et al. Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell 83, 269–278 (1995).

    CAS  Article  Google Scholar 

  31. 31

    Wiederkehr, A., Staple, J. & Caroni, P. The motility-associated proteins GAP-43, MARCKS, and CAP-23 share unique targeting and surface activity-inducing properties. Exp. Cell Res. 236, 103–116 (1997).

    CAS  Article  Google Scholar 

  32. 32

    Mosevitsky, M. I. et al. The BASP1 family of myristoylated proteins abundant in axonal termini. Primary structure analysis and physico-chemical properties. Biochimie 79, 373–384 (1997).

    CAS  Article  Google Scholar 

  33. 33

    Maekawa, S. et al. Cholesterol-dependent localization of NAP-22 on a neuronal membrane microdomain (raft). J. Biol. Chem. 274, 21369–21374 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Richardson, P. M. & Verge, V. M. K. The induction of a regenerative propensity in sensory neurons following peripheral axonal injury. J. Neurocytol. 15, 585–594 (1986).

    CAS  Article  Google Scholar 

  35. 35

    Davies, S. J. et al. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–683 (1997).

    CAS  Article  Google Scholar 

  36. 36

    Neve, R. L., Finch, E. A., Bird, E. D. & Benowitz, L. I. Growth-associated protein GAP-43 is expressed selectively in associative regions of the adult human brain. Proc. Natl. Acad. Sci. USA 85, 3638–3642 (1988).

    CAS  Article  Google Scholar 

  37. 37

    Himi, T., Okazaki, T. & Mori, N. SCG10 mRNA localization in the hippocampus: comparison with other mRNAs encoding neuronal growth-associated proteins (nGAPs). Brain Res. 655, 177–185 (1994).

    CAS  Article  Google Scholar 

  38. 38

    Sugiura, Y. & Mori, N. SCG10 expresses growth-associated manner in developing rat brain, but shows a different pattern to p19/stathmin or GAP-43. Dev. Brain Res. 90, 73–91 (1995).

    CAS  Article  Google Scholar 

  39. 39

    McNamara, R. K. & Lenox, R. H. Comparative distribution of myristoylated alanine-rich C kinase substrate (MARCKS) and F1/GAP-43 gene expression in the adult rat brain. J. Comp. Neurol. 379, 48–71 (1997).

    CAS  Article  Google Scholar 

  40. 40

    Higo, N., Oishi, T., Yamashita, A., Matsuda, K. & Hayashi, M. Quantitative non-radioactive in situ hybridization study of GAP-43 and SCG10 mRNAs in the cerebral cortex of adult and infant macaque monkeys. Cereb. Cortex 9, 317–331 (1999).

    CAS  Article  Google Scholar 

  41. 41

    Frey, D., Laux, T., Xu, L., Schneider, C. & Caroni, P. Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J. Cell Biol. 149, 1443–1453 (2000).

    CAS  Article  Google Scholar 

  42. 42

    Laux, T. et al. GAP43, MARCKS, and CAP23 modulate PI(4,5)P-2 at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J. Cell Biol. 149, 1455–1471 (1455).

    Article  Google Scholar 

  43. 43

    Song, H. J. & Poo, M. -M. Signal transduction underlying growth cone guidance by diffusible factors. Curr. Opin. Neurobiol. 9, 355–363 (1999).

    CAS  Article  Google Scholar 

  44. 44

    Mueller, B. K. Growth cone guidance: first steps towards a deeper understanding. Annu. Rev. Neurosci. 22, 351–388 (1999).

    CAS  Article  Google Scholar 

  45. 45

    Li, Y., Field, P. M. & Raisman, G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277, 2000–2002 (1997).

    CAS  Article  Google Scholar 

  46. 46

    Ramon-Cueto, A., Cordero, M. I., Santos-Benito, F. F. & Avila, J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25, 425–435 (2000).

    CAS  Article  Google Scholar 

  47. 47

    McDonald, J. W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412 (1999).

    CAS  Article  Google Scholar 

  48. 48

    Huang, D. W., McKerracher, L., Braun, P. E. & David, S. A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron 24, 639–647 (1999).

    CAS  Article  Google Scholar 

  49. 49

    Thallmair, M. et al. Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nat. Neurosci. 1, 124–131 (1998).

    CAS  Article  Google Scholar 

Download references


We thank R. Chesebro for technical support, N. Cant for advice and assistance with retrograde labeling and L. Katz and J. Crowley for help with the fluorescence imaging. We also thank B. Finch, L. Katz, D. Purves, D. Chikaraishi, M. Nicolelis and A. Udvadia for comments on the manuscript. Support for this work was provided by the National Eye Institute (NIH), Novartis Pharmaceuticals and the Christopher Reeves Paralysis Foundation. K.R.B. is the recipient of a Ruth K. Broad Foundation fellowship.

Author information



Corresponding author

Correspondence to J. H. Pate Skene.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bomze, H., Bulsara, K., Iskandar, B. et al. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci 4, 38–43 (2001).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing