Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A model for intradendritic computation of binocular disparity

Abstract

Many complex cells in mammalian primary visual cortex are finely tuned to binocular disparity. In the prevailing model, several binocular simple cells drive each disparity-tuned complex cell. However, some cat complex cells receive direct LGN input, and binocular simple cells are rare in macaque. In our biophysically detailed compartmental model, active dendrites of a single neuron perform the multiple simple-cell-like subunit computations that underlie both orientation and disparity tuning. The responses of our detailed model could be predicted by a simple algebraic formula closely related to an 'energy' model. Adding inhibitory synapses led to sharper, more contrast-invariant tuning curves. Thus active dendrites could contribute to binocular-disparity tuning in complex cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Connectivity between LGN center–surround cells and the model complex cell.
Figure 2: Interaction between synaptic inputs on two branches.
Figure 3: Response of the model cell to sinusoidal gratings.
Figure 4: Response of the cell to optimally oriented pairs of bars.
Figure 5: Binocular disparity kernels, showing the deviation of the cell's response from linearity.
Figure 6: Responses of two cells with different configurations of inhibitory synapses.
Figure 7: Mechanisms of intradendritic spiking with distal inhibition.

Similar content being viewed by others

References

  1. Barlow, H. B., Blakemore, C. & Pettigrew, J. D. The neural mechanism of binocular depth perception. J. Physiol. (Lond.) 193, 327– 342 (1967).

    Article  CAS  Google Scholar 

  2. Poggio, G. F. & Fischer, B. Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J. Neurophysiol. 40, 1392–1405 (1977).

    Article  CAS  Google Scholar 

  3. Movshon, J. A., Thompson, I. D. & Tolhurst, D. J. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. (Lond.) 283, 53–77 (1978).

    Article  CAS  Google Scholar 

  4. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 ( 1962).

    Article  CAS  Google Scholar 

  5. Movshon, J. A., Thompson, I. D. & Tolhurst, D. J. Receptive field organization of complex cells in the cat's striate cortex. J. Physiol. (Lond.) 283, 79–99 (1978).

    Article  CAS  Google Scholar 

  6. Ohzawa, I., DeAngelis, G. C. & Freeman, R. D. Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249, 1037–1041 (1990).

    Article  CAS  Google Scholar 

  7. Ohzawa, I., DeAngelis, G. C. & Freeman, R. D. Encoding of binocular disparity by complex cells in the cat's visual cortex. J. Neurophysiol. 77, 2879–2909 (1997).

    Article  CAS  Google Scholar 

  8. Hubel, D. H. Exploration of the primary visual cortex, 1955–1978. Nature 299, 515–524 ( 1982).

    Article  CAS  Google Scholar 

  9. Fleet, D. J., Wagner, H. & Heeger, D. J. Neural encoding of binocular disparity: energy models, position shifts and phase shifts. Vision Res. 36, 1839–1857 (1996).

    Article  CAS  Google Scholar 

  10. Zhu, Y.-D. & Qian, N. Binocular receptive field models, disparity tuning, and characteristic disparity. Neural Comput. 8, 1611–1641 (1996).

    Article  CAS  Google Scholar 

  11. LeVay, S. & Gilbert, C. Laminar patterns of geniculocortical projection in the cat. Brain Res. 113, 1 –19 (1976).

    Article  CAS  Google Scholar 

  12. Alonso, J.-M. & Martinez, L. M. Functional connectivity between simple cells and complex cells in cat striate cortex. Nat. Neurosci. 1, 395–403 ( 1998).

    Article  CAS  Google Scholar 

  13. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  14. Poggio, G. F., Doty, R. W. Jr & Talbot, W. H. Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze. J. Neurophysiol. 40, 1369–1391 (1977).

    Article  CAS  Google Scholar 

  15. Livingstone, M. S. & Tsao, D. Y. Receptive fields of disparity-selective neurons in macaque striate cortex. Nat. Neurosci. 2, 825–832 ( 1999).

    Article  CAS  Google Scholar 

  16. Koch, C. & Poggio, T. in Synaptic Function (eds. Edelman, G. M., Gall, W. E. & Cowan, W. M.) 637– 697 (Wiley, New York, 1987).

    Google Scholar 

  17. Mel, B. W., Ruderman, D. L. & Archie, K. A. Translation-invariant orientation tuning in visual 'complex' cells could derive from intradendritic computations. J. Neurosci. 18, 4325–4334 (1998).

    Article  CAS  Google Scholar 

  18. Rall, W. & Rinzel, J. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys. J. 13, 648–688 (1973).

    Article  CAS  Google Scholar 

  19. Koch, C., Poggio, T. & Torre, V. Retinal ganglion cells: a functional interpretation of dendritic morphology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 298, 227–264 ( 1982).

    Article  CAS  Google Scholar 

  20. Woolf, T., Shepherd, G. & Greer, C. Local information processing in dendritic trees: Subsets of spines in granule cells of the mammalian olfactory bulb. J. Neurosci. 11, 1837–1854 (1991).

    Article  CAS  Google Scholar 

  21. Zador, A. M., Agmon-Snir, H. & Segev, I. The morphoelectrotonic transform: a graphical approach to dendritic function. J. Neurosci. 15, 1669–1682 (1995).

    Article  CAS  Google Scholar 

  22. Koch, C., Poggio, T. & Torre, V. Computations in the vertebrate retina: Gain enhancement, differentiation and motion discrimination. Trends Neurosci. 9, 204–211 (1986).

    Article  Google Scholar 

  23. Rall, W. & Segev, I. in Synaptic Function (eds. Edelman, G. M., Gall, W. E. & Cowan, W. M.) 605–636 (Wiley, New York, 1987).

    Google Scholar 

  24. Mel, B. W. in Advances in Neural Information Processing Systems Vol. 4 (eds. Moody, J. E., Hanson, S. J. & Lippman, R. P.) 35–42 (Kaufmann, San Mateo, California, 1992).

    Google Scholar 

  25. Mel, B. W. NMDA-based pattern discrimination in a modeled cortical neuron. Neural Comput. 4, 502–517 (1992).

    Article  Google Scholar 

  26. Borg-Graham, L. J. & Grzywacz, N. M. in Single Neuron Computation (eds. McKenna, T., Davis, J. & Zornetzer, S. 347–375 (Academic, San Diego, 1992 ).

    Book  Google Scholar 

  27. Mel, B. W. Synaptic integration in an excitable dendritic tree. J. Neurophysiol. 70, 1086–1101 ( 1993).

    Article  CAS  Google Scholar 

  28. Johnston, D., Magee, J. C., Colbert, C. M. & Christie, B. R. Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19, 165–186 (1996).

    Article  CAS  Google Scholar 

  29. Stuart, G., Spruston, N., Sakmann, B. & Häusser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125– 131 (1997).

    Article  CAS  Google Scholar 

  30. Mel, B. W., Ruderman, D. L. & Archie, K. A. in Advances in Neural Information Processing Systems Vol. 10 (eds. Jordan, M. I., Kearns, M. J. & Solla, S. A.) 208–214 (MIT Press, Cambrid ge, Massachusetts, 1998).

    Google Scholar 

  31. Sclar, G. & Freeman, R. D. Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast. Exp. Brain Res. 46, 457–461 ( 1982).

    Article  CAS  Google Scholar 

  32. Skottun, B. C., Ohzawa, I., Sclar, G. & Freeman, R. D. The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. J. Neurophysiol. 57, 773–786 (1987).

    Article  CAS  Google Scholar 

  33. Beaulieu, C. & Colonnier, M. A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. J. Comp. Neurol. 231, 180–189 (1985).

    Article  CAS  Google Scholar 

  34. Vidyasagar, T. R., Pei, X. & Volgushev, M. Multiple mechanisms underlying the orientation selectivity of visual cortical neurones. Trends Neurosci. 19, 272–277 (1996).

    Article  CAS  Google Scholar 

  35. Sompolinksy, H. & Shapley, R. New perspectives on the mechanisms for orientation selectivity. Curr. Opin. Neurobiol. 7, 514–522 ( 1997).

    Article  Google Scholar 

  36. Gilbert, C. D., Das, A., Ito, M., Kapadia, M. & Westheimer, G. Spatial integration and cortical dynamics. Proc. Natl. Acad. Sci. USA 93, 615– 622 (1996).

    Article  CAS  Google Scholar 

  37. Chance, F. S., Nelson, S. B. & Abbott, L. F. Complex cells as cortically amplified simple cells. Nat. Neurosci. 2, 277– 282 (1999).

    Article  CAS  Google Scholar 

  38. Markram, H. & Tsodyks, M. Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382, 807–810 (1996).

    Article  CAS  Google Scholar 

  39. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997).

    Article  CAS  Google Scholar 

  40. Destexhe, A. & Paré, D. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81, 1531–1547 (1999).

    Article  CAS  Google Scholar 

  41. Mel, B. W. in Dendrites (eds. Stuart, G., Spruston, N. & Häusser, M.) 271–289 (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  42. Kapadia, M., Ito, M., Gilbert, C. D. & Westheimer, G. Improvement in visual sensitivity by changes in local context—parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843–856 (1995).

    Article  CAS  Google Scholar 

  43. Peterhans, E. & von der Heydt, R. Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps. J. Neurosci. 9, 1749–1763 ( 1989).

    Article  CAS  Google Scholar 

  44. McAdams, C. J. & Maunsell, J. H. R. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431– 441 (1999).

    Article  CAS  Google Scholar 

  45. Hines, M. L. & Carnevale, N. T. The NEURON simulation environment. Neural Comput. 9, 1179– 1209 (1997).

    Article  CAS  Google Scholar 

  46. Koch, C. & Zador, A. The function of dendritic spines: Devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13, 413–422 (1993).

    Article  CAS  Google Scholar 

  47. Wörgötter, F. & Koch, C. A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity. J. Neurosci. 11, 1959– 1979 (1991).

    Article  Google Scholar 

  48. Bernander, O., Douglas, R., Martin, K. & Koch, C. Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc. Natl. Acad. Sci. USA 88, 11569– 11573 (1991).

    Article  CAS  Google Scholar 

  49. Borg-Graham, L. J., Monier, C. & Frégnac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).

    Article  CAS  Google Scholar 

  50. Destexhe, A., Mainen, Z. & Sejnowski, T. J. Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1, 195–230 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation. We thank Dan Ruderman for contributions to early stages of this work, and Margaret Livingstone and Gary Holt for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Archie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archie, K., Mel, B. A model for intradendritic computation of binocular disparity. Nat Neurosci 3, 54–63 (2000). https://doi.org/10.1038/71125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing