Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Memory reactivation improves visual perception

Abstract

Human perception thresholds can improve through learning. Here we report findings challenging the fundamental 'practice makes perfect' basis of procedural learning theory, showing that brief reactivations of encoded visual memories are sufficient to improve perceptual discrimination thresholds. Learning was comparable to standard practice-induced learning and was not due to short training per se, nor to an epiphenomenon of primed retrieval enhancement. The results demonstrate that basic perceptual functions can be substantially improved by memory reactivation, supporting a new account of perceptual learning dynamics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Improved discrimination thresholds following procedural memory reactivation.
Figure 2: Long-term retention.
Figure 3: Improvements not explained by primed enhanced retrieval or short training per se.

References

  1. 1

    Karni, A. & Sagi, D. Nature 365, 250–252 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Censor, N., Sagi, D. & Cohen, L.G. Nat. Rev. Neurosci. 13, 658–664 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Zhou, X. & Merzenich, M.M. Proc. Natl. Acad. Sci. USA 104, 15935–15940 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Jones, S.V., Choi, D.C., Davis, M. & Ressler, K.J. J. Neurosci. 28, 13106–13111 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Nader, K., Schafe, G.E. & Le Doux, J.E. Nature 406, 722–726 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Dudai, Y. Annu. Rev. Neurosci. 35, 227–247 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Schiller, D. et al. Nature 463, 49–53 (2010).

    CAS  Article  Google Scholar 

  8. 8

    de Beukelaar, T.T., Woolley, D.G. & Wenderoth, N. Cortex 59, 138–145 (2014).

    Article  Google Scholar 

  9. 9

    Censor, N., Horovitz, S.G. & Cohen, L.G. Neuron 81, 69–76 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Rouder, J.N., Morey, R.D., Speckman, P.L. & Province, J.M. J. Math. Psychol. 56, 356–374 (2012).

    Article  Google Scholar 

  11. 11

    Morey, R.D. & Rouder, J.N. BayesFactor 0.9. 12–2. https://cran.r-project.org/web/packages/BayesFactor/index.html (Comprehensive R Archive Network, 2015).

  12. 12

    Johnson, V.E. Proc. Natl. Acad. Sci. USA 110, 19313–19317 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Lee, J.L. Nat. Neurosci. 11, 1264–1266 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Censor, N., Karni, A. & Sagi, D. Vision Res. 46, 4071–4074 (2006).

    Article  Google Scholar 

  15. 15

    Aberg, K.C., Tartaglia, E.M. & Herzog, M.H. Vision Res. 49, 2087–2094 (2009).

    Article  Google Scholar 

  16. 16

    Hussain, Z., Sekuler, A.B. & Bennett, P.J. Vision Res. 49, 2624–2634 (2009).

    Article  Google Scholar 

  17. 17

    Ahissar, M. & Hochstein, S. Nature 387, 401–406 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Tartaglia, E.M., Bamert, L., Mast, F.W. & Herzog, M.H. Curr. Biol. 19, 2081–2085 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Menzel, R., Manz, G., Menzel, R. & Greggers, U. Learn. Mem. 8, 198–208 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Stickgold, R., James, L. & Hobson, J.A. Nat. Neurosci. 3, 1237–1238 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Herszage, H. Harris, and D. Sagi for their feedback on this work and Y. Bonneh for experimental programming. The study was supported by the I-CORE program of the Planning and Budgeting Committee and the ISF (grant 51/11).

Author information

Affiliations

Authors

Contributions

R.A.H., R.L.M., S.N., and N.C. designed the experiments. R.A.H., R.L.M., S.N., and N.C. collected the data. R.A.H., R.L.M., S.N., J.D.R., and N.C. analyzed the data. R.A.H., R.L.M., J.D.R., and N.C. wrote the paper.

Corresponding author

Correspondence to Nitzan Censor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amar-Halpert, R., Laor-Maayany, R., Nemni, S. et al. Memory reactivation improves visual perception. Nat Neurosci 20, 1325–1328 (2017). https://doi.org/10.1038/nn.4629

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing