Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective attention within the foveola

Abstract

Efficient control of attentional resources and high-acuity vision are both fundamental for survival. Shifts in visual attention are known to covertly enhance processing at locations away from the center of gaze, where visual resolution is low. It is unknown, however, whether selective spatial attention operates where the observer is already looking—that is, within the high-acuity foveola, the small yet disproportionally important rod-free region of the retina. Using new methods for precisely controlling retinal stimulation, here we show that covert attention flexibly improves and speeds up both detection and discrimination at loci only a fraction of a degree apart within the foveola. These findings reveal a surprisingly precise control of attention and its involvement in fine spatial vision. They show that the commonly studied covert shifts of attention away from the fovea are the expression of a global mechanism that exerts its action across the entire visual field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Attention control in the parafovea (experiment 1).
Figure 2: Attention control within the foveola (experiment 2).
Figure 3: Attention and fine spatial discrimination (experiment 3).
Figure 4: Fine attentional control during normal retinal image motion (experiment 4).

Similar content being viewed by others

References

  1. Carrasco, M. Visual attention: the past 25 years. Vision Res. 51, 1484–1525 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Reynolds, J.H. & Chelazzi, L. Attentional modulation of visual processing. Annu. Rev. Neurosci. 27, 611–647 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Carrasco, M. Covert attention increases contrast sensitivity: Psychophysical, neurophysiological and neuroimaging studies. Prog. Brain Res. 154, 33–70 (2006).

    Article  PubMed  Google Scholar 

  4. Anton-Erxleben, K. & Carrasco, M. Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Nat. Rev. Neurosci. 14, 188–200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kowler, E., Anderson, E., Dosher, B. & Blaser, E. The role of attention in the programming of saccades. Vision Res. 35, 1897–1916 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Schall, J.D. On the role of frontal eye field in guiding attention and saccades. Vision Res. 44, 1453–1467 (2004).

    Article  PubMed  Google Scholar 

  7. Li, H.H., Barbot, A. & Carrasco, M. Saccade preparation reshapes sensory tuning. Curr. Biol. 26, 1564–1570 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Egeth, H.E. & Yantis, S. Visual attention: control, representation, and time course. Annu. Rev. Psychol. 48, 269–297 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Krauzlis, R.J., Lovejoy, L.P. & Zénon, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36, 165–182 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Curcio, C.A., Sloan, K.R., Kalina, R.E. & Hendrickson, A.E. Human photoreceptor topography. J. Comp. Neurol. 292, 497–523 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Cavanagh, P., Hunt, A.R., Afraz, A. & Rolfs, M. Visual stability based on remapping of attention pointers. Trends Cogn. Sci. 14, 147–153 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Poletti, M. & Rucci, M. A compact field guide to the study of microsaccades: challenges and functions. Vision Res. 118, 83–97 (2016).

    Article  PubMed  Google Scholar 

  13. Kowler, E. Eye movements: the past 25 years. Vision Res. 51, 1457–1483 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rucci, M. & Poletti, M. Control and functions of fixational eye movements. Annu. Rev. Vis. Sci. 1, 499–518 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eriksen, C.W. & Hoffman, J.E. Temporal and spatial characteristics of selective encoding from visual displays. Percept. Psychophys. 12, 2-B, 201–204 (1972).

    Google Scholar 

  16. Eriksen, C.W. & St James, J.D. Visual attention within and around the field of focal attention: a zoom lens model. Percept. Psychophys. 40, 225–240 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Nakayama, K. & Mackeben, M. Sustained and transient components of focal visual attention. Vision Res. 29, 1631–1647 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Intriligator, J. & Cavanagh, P. The spatial resolution of visual attention. Cognit. Psychol. 43, 171–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Barbot, A. & Carrasco, M. Attention modifies spatial resolution according to task demands. Psychol. Sci. 28, 285–296 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Poletti, M., Listorti, C. & Rucci, M. Microscopic eye movements compensate for nonhomogeneous vision within the fovea. Curr. Biol. 23, 1691–1695 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Santini, F., Redner, G., Iovin, R. & Rucci, M. EyeRIS: a general-purpose system for eye-movement-contingent display control. Behav. Res. Methods 39, 350–364 (2007).

    Article  PubMed  Google Scholar 

  22. Holmqvist, K. et al. Eye Tracking: A Comprehensive Guide to Methods and Measures (Oxford Univ. Press, 2011).

  23. Poletti, M., Aytekin, M. & Rucci, M. Head-eye coordination at a microscopic scale. Curr. Biol. 25, 3253–3259 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aytekin, M., Victor, J.D. & Rucci, M. The visual input to the retina during natural head-free fixation. J. Neurosci. 34, 12701–12715 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ko, H.-K., Poletti, M. & Rucci, M. Microsaccades precisely relocate gaze in a high visual acuity task. Nat. Neurosci. 13, 1549–1553 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Virsu, V. & Rovamo, J. Visual resolution, contrast sensitivity, and the cortical magnification factor. Exp. Brain Res. 37, 475–494 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Carrasco, M., McElree, B., Denisova, K. & Giordano, A.M. Speed of visual processing increases with eccentricity. Nat. Neurosci. 6, 699–700 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wyman, D. & Steinman, R.M. Latency characteristics of small saccades. Vision Res. 13, 2173–2175 (1973).

    Article  CAS  PubMed  Google Scholar 

  29. Sinha, R. et al. Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell 168, 413–426 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Azzopardi, P., Jones, K.E. & Cowey, A. Uneven mapping of magnocellular and parvocellular projections from the lateral geniculate nucleus to the striate cortex in the macaque monkey. Vision Res. 39, 2179–2189 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Malpeli, J.G., Lee, D. & Baker, F.H. Laminar and retinotopic organization of the macaque lateral geniculate nucleus: magnocellular and parvocellular magnification functions. J. Comp. Neurol. 375, 363–377 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Goffart, L., Hafed, Z.M. & Krauzlis, R.J. Visual fixation as equilibrium: evidence from superior colliculus inactivation. J. Neurosci. 32, 10627–10636 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He, S., Cavanagh, P. & Intriligator, J. Attentional resolution. Trends Cogn. Sci. 1, 115–121 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Yeshurun, Y. & Rashal, E. Precueing attention to the target location diminishes crowding and reduces the critical distance. J. Vis. 10, 16 (2010).

    Article  PubMed  Google Scholar 

  35. Levi, D.M., Klein, S.A. & Aitsebaomo, A.P. Vernier acuity, crowding and cortical magnification. Vision Res. 25, 963–977 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Rucci, M., Iovin, R., Poletti, M. & Santini, F. Miniature eye movements enhance fine spatial detail. Nature 447, 851–854 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Womelsdorf, T., Anton-Erxleben, K. & Treue, S. Receptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation. J. Neurosci. 28, 8934–8944 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fries, P., Reynolds, J.H., Rorie, A.E. & Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Cohen, M.R. & Maunsell, J.H.R. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mitchell, J.F., Sundberg, K.A. & Reynolds, J.H. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63, 879–888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Azzopardi, P. & Cowey, A. Preferential representation of the fovea in the primary visual cortex. Nature 361, 719–721 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Cherici, C., Kuang, X., Poletti, M. & Rucci, M. Precision of sustained fixation in trained and untrained observers. J. Vis. 12, 1–16 (2012).

    Article  Google Scholar 

  43. Lisi, M., Cavanagh, P. & Zorzi, M. Spatial constancy of attention across eye movements is mediated by the presence of visual objects. Atten. Percept. Psychophys. 77, 1159–1169 (2015).

    Article  PubMed  Google Scholar 

  44. Yuval-Greenberg, S., Merriam, E.P. & Heeger, D.J. Spontaneous microsaccades reflect shifts in covert attention. J. Neurosci. 34, 13693–13700 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hafed, Z.M. Alteration of visual perception prior to microsaccades. Neuron 77, 775–786 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Crane, H.D. & Steele, C.M. Generation-V dual-Purkinje-image eyetracker. Appl. Opt. 24, 527–537 (1985).

    Article  CAS  PubMed  Google Scholar 

  47. Putnam, N.M. et al. The locus of fixation and the foveal cone mosaic. J. Vis. 5, 632–639 (2005).

    Article  PubMed  Google Scholar 

  48. Li, K.Y., Tiruveedhula, P. & Roorda, A. Intersubject variability of foveal cone photoreceptor density in relation to eye length. Invest. Ophthalmol. Vis. Sci. 51, 6858–6867 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Anderson, A.J. & Vingrys, A.J. Small samples: does size matter? Invest. Ophthalmol. Vis. Sci. 42, 1411–1413 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation grants BCS-1534932 (M.P.) and 1420212 (M.R.), and National Institutes of Health grants R01-EY18363 (M.R.), R01-EY019693 (M.C) and R01-EY016200 (M.C). We thank M. Landy, S. Ling, E. Niebur, M. Spering, J. Victor, A. White and Y. Yeshurun for comments and R. Ezzo for helping with data collection.

Author information

Authors and Affiliations

Authors

Contributions

M.P. conceived the study and collected and analyzed the data. The three authors contributed to the design of the experiments, the interpretation of experimental data, and the writing of the manuscript.

Corresponding author

Correspondence to Martina Poletti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Velocity of eye movements.

Data represent averages across observers (n=5) for the cue-target intervals of Experiment 1 (parafovea; Fig. 1) and 2 (foveola; Fig. 2). In Experiment 2, stimuli were stabilized on the retina. (A) Average polar histograms of ocular drift velocity. (B) Mean instantaneous speed of ocular drift. Similar speed values were measured in the two experiments (p=0.63; two-tailed paired t-test). Error bars represent s.e.m. Time t=0 marks cue onset.

Supplementary Figure 2 Comparison between manual and oculomotor reaction times with stimuli in the parafovea and in the foveola.

The two sets of data on the left (Manual) refer to the neutral trials of the detection experiments of Fig. 1 (parafovea; red) and Fig. 2 (foveola; blue). In these experiments, the observer reported the appearance of the target by pressing a button. For comparison, data points on the right (Saccade) show oculomotor reaction times in the neutral trials of similar experiments, but in which the target was reported by performing a saccade toward its location rather than by pressing a button. Reaction times are measured relative to target’s offset. Error bars are s.e.m. (n=4).

Supplementary Figure 3 Fine attentional control during normal retinal image motion (drift-only trials).

Means ± s.e.m. for two individual subjects who were run extensively in Experiment 4 to collect sufficient numbers of trials without microsaccades (percentages of trials with microsaccades: 34%). Both subjects continued to exhibit significant differences between valid and invalid trials in both sensitivity (p<0.05, two-tailed z-test) and reaction times (p<0.05, ranksum test).

Supplementary Figure 4 Gaze position.

Average histograms of eye position in the cue-target intervals of the discrimination experiments: (A) Experiment 3 (Fig. 3); and (B) Experiment 4 (Fig. 4), identical to Experiment 3, but without retinal stabilization. Data represent averages across observers (n=5).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletti, M., Rucci, M. & Carrasco, M. Selective attention within the foveola. Nat Neurosci 20, 1413–1417 (2017). https://doi.org/10.1038/nn.4622

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4622

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing