Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functions and dysfunctions of neocortical inhibitory neuron subtypes

Abstract

Neocortical inhibitory neurons exhibit remarkably diverse morphology, physiological properties and connectivity. Genetic access to molecularly defined subtypes of inhibitory neurons has aided their functional characterization in recent years. These studies have established that, instead of simply balancing excitatory neuron activity, inhibitory neurons actively shape excitatory circuits in a subtype-specific manner. We review the emerging view that inhibitory neuron subtypes perform context-dependent modulation of excitatory activity, as well as regulate experience-dependent plasticity of excitatory circuits. We then review the roles of neuromodulators in regulating the subtype-specific functions of inhibitory neurons. Finally, we discuss the idea that dysfunctions of inhibitory neuron subtypes may be responsible for various aspects of neurological disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Context-dependent modulation of V1 by IN subtypes.
Figure 2: Relationship between disinhibition and excitatory neuron plasticity in sensory and motor cortex.

Similar content being viewed by others

References

  1. Hangya, B., Pi, H.-J., Kvitsiani, D., Ranade, S.P. & Kepecs, A. From circuit motifs to computations: mapping the behavioral repertoire of cortical interneurons. Curr. Opin. Neurobiol. 26, 117–124 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Letzkus, J.J., Wolff, S.B.E. & Lüthi, A. Disinhibition, a circuit mechanism for associative learning and memory. Neuron 88, 264–276 (2015).

    CAS  PubMed  Google Scholar 

  3. Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Karnani, M.M. et al. Cooperative subnetworks of molecularly similar interneurons in mouse neocortex. Neuron 90, 86–100 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wall, N.R. et al. Brain-wide maps of synaptic input to cortical interneurons. J. Neurosci. 36, 4000–4009 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ji, X.-Y. et al. Thalamocortical innervation pattern in mouse auditory and visual cortex: laminar and cell-type specificity. Cereb. Cortex 26, 2612–2625 (2016).

    PubMed  Google Scholar 

  7. Pfeffer, C.K., Xue, M., He, M., Huang, Z.J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Naka, A. & Adesnik, H. Inhibitory circuits in cortical layer 5. Front. Neural Circuits 10, 35 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Kepecs, A. & Fishell, G. Interneuron cell types are fit to function. Nature 505, 318–326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Caroni, P. Inhibitory microcircuit modules in hippocampal learning. Curr. Opin. Neurobiol. 35, 66–73 (2015).

    CAS  PubMed  Google Scholar 

  11. Froemke, R.C. Plasticity of cortical excitatory-inhibitory balance. Annu. Rev. Neurosci. 38, 195–219 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Roux, L. & Buzsáki, G. Tasks for inhibitory interneurons in intact brain circuits. Neuropharmacology 88, 10–23 (2015).

    CAS  PubMed  Google Scholar 

  13. Stryker, M.P. A neural circuit that controls cortical state, plasticity, and the gain of sensory responses in mouse. Cold Spring Harb. Symp. Quant. Biol. 79, 1–9 (2014).

    PubMed  Google Scholar 

  14. Urban-Ciecko, J. & Barth, A.L. Somatostatin-expressing neurons in cortical networks. Nat. Rev. Neurosci. 17, 401–409 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Niell, C.M. & Stryker, M.P. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472–479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fu, Y. et al. A cortical circuit for gain control by behavioral state. Cell 156, 1139–1152 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Polack, P.-O., Friedman, J. & Golshani, P. Cellular mechanisms of brain state-dependent gain modulation in visual cortex. Nat. Neurosci. 16, 1331–1339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pakan, J.M. et al. Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex. Elife 5, e14985 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Nelson, A. et al. A circuit for motor cortical modulation of auditory cortical activity. J. Neurosci. 33, 14342–14353 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schneider, D.M., Nelson, A. & Mooney, R. A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature 513, 189–194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou, M. et al. Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nat. Neurosci. 17, 841–850 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pi, H.-J. et al. Cortical interneurons that specialize in disinhibitory control. Nature 503, 521–524 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, S. et al. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660–665 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Goard, M.J., Pho, G.N., Woodson, J. & Sur, M. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions. Elife 5, e13764 (2016).

    PubMed  PubMed Central  Google Scholar 

  25. Kuchibhotla, K.V. et al. Parallel processing by cortical inhibition enables context-dependent behavior. Nat. Neurosci. 20, 62–71 (2017).

    CAS  PubMed  Google Scholar 

  26. Carcea, I., Insanally, M.N. & Froemke, R.C. Dynamics of auditory cortical activity during behavioural engagement and auditory perception. Nat. Commun. 8, 14412 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Krupa, D.J., Wiest, M.C., Shuler, M.G., Laubach, M. & Nicolelis, M.A.L. Layer-specific somatosensory cortical activation during active tactile discrimination. Science 304, 1989–1992 (2004).

    CAS  PubMed  Google Scholar 

  28. Moore, T. & Armstrong, K.M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003).

    CAS  PubMed  Google Scholar 

  29. Squire, R.F., Noudoost, B., Schafer, R.J. & Moore, T. Prefrontal contributions to visual selective attention. Annu. Rev. Neurosci. 36, 451–466 (2013).

    CAS  PubMed  Google Scholar 

  30. Miller, E.K. & Buschman, T.J. Cortical circuits for the control of attention. Curr. Opin. Neurobiol. 23, 216–222 (2013).

    CAS  PubMed  Google Scholar 

  31. Fiser, A. et al. Experience-dependent spatial expectations in mouse visual cortex. Nat. Neurosci. 19, 1658–1664 (2016).

    CAS  PubMed  Google Scholar 

  32. Karnani, M.M. et al. Opening holes in the blanket of inhibition: localized lateral disinhibition by VIP interneurons. J. Neurosci. 36, 3471–3480 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Silberberg, G. & Markram, H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53, 735–746 (2007).

    CAS  PubMed  Google Scholar 

  34. Kapfer, C., Glickfeld, L.L., Atallah, B.V. & Scanziani, M. Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nat. Neurosci. 10, 743–753 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fino, E. & Yuste, R. Dense inhibitory connectivity in neocortex. Neuron 69, 1188–1203 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z.J. & Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature 490, 226–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Makino, H. & Komiyama, T. Learning enhances the relative impact of top-down processing in the visual cortex. Nat. Neurosci. 18, 1116–1122 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamm, J.P. & Yuste, R. Somatostatin interneurons control a key component of mismatch negativity in mouse visual cortex. Cell Rep. 16, 597–604 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wolff, S.B.E. et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature 509, 453–458 (2014).

    CAS  PubMed  Google Scholar 

  40. Lovett-Barron, M. et al. Dendritic inhibition in the hippocampus supports fear learning. Science 343, 857–863 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Muñoz, W., Tremblay, R., Levenstein, D. & Rudy, B. Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science 355, 954–959 (2017).

    PubMed  Google Scholar 

  42. Lee, S., Kruglikov, I., Huang, Z.J., Fishell, G. & Rudy, B. A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat. Neurosci. 16, 1662–1670 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Garcia-Junco-Clemente, P. et al. An inhibitory pull-push circuit in frontal cortex. Nat. Neurosci. 20, 389–392 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Espinosa, J.S. & Stryker, M.P. Development and plasticity of the primary visual cortex. Neuron 75, 230–249 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lazarus, M.S. & Huang, Z.J. Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity. J. Neurophysiol. 106, 775–787 (2011).

    PubMed  PubMed Central  Google Scholar 

  46. Kuhlman, S.J. et al. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Nature 501, 543–546 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hengen, K.B., Lambo, M.E., Van Hooser, S.D., Katz, D.B. & Turrigiano, G.G. Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron 80, 335–342 (2013).

    CAS  PubMed  Google Scholar 

  48. Maffei, A., Lambo, M.E. & Turrigiano, G.G. Critical period for inhibitory plasticity in rodent binocular V1. J. Neurosci. 30, 3304–3309 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kannan, M., Gross, G.G., Arnold, D.B. & Higley, M.J. Visual deprivation during the critical period enhances layer 2/3 GABAergic inhibition in mouse V1. J. Neurosci. 36, 5914–5919 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Froemke, R.C., Merzenich, M.M. & Schreiner, C.E. A synaptic memory trace for cortical receptive field plasticity. Nature 450, 425–429 (2007).

    CAS  PubMed  Google Scholar 

  51. Keck, T. et al. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat. Neurosci. 11, 1162–1167 (2008).

    CAS  PubMed  Google Scholar 

  52. Hofer, S.B., Mrsic-Flogel, T.D., Bonhoeffer, T. & Hübener, M. Experience leaves a lasting structural trace in cortical circuits. Nature 457, 313–317 (2009).

    CAS  PubMed  Google Scholar 

  53. Keck, T. et al. Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex. Neuron 71, 869–882 (2011).

    CAS  PubMed  Google Scholar 

  54. Chen, J.L. et al. Structural basis for the role of inhibition in facilitating adult brain plasticity. Nat. Neurosci. 14, 587–594 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. van Versendaal, D. et al. Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity. Neuron 74, 374–383 (2012).

    CAS  PubMed  Google Scholar 

  56. Villa, K.L. et al. Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo. Neuron 89, 756–769 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaneko, M. & Stryker, M.P. Sensory experience during locomotion promotes recovery of function in adult visual cortex. Elife 3, e02798 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Fu, Y., Kaneko, M., Tang, Y., Alvarez-Buylla, A. & Stryker, M.P. A cortical disinhibitory circuit for enhancing adult plasticity. Elife 4, e05558 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Peters, A.J., Chen, S.X. & Komiyama, T. Emergence of reproducible spatiotemporal activity during motor learning. Nature 510, 263–267 (2014).

    CAS  PubMed  Google Scholar 

  60. Chen, S.X., Kim, A.N., Peters, A.J. & Komiyama, T. Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat. Neurosci. 18, 1109–1115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Xue, M., Atallah, B.V. & Scanziani, M. Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 511, 596–600 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Donato, F., Rompani, S.B. & Caroni, P. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504, 272–276 (2013).

    CAS  PubMed  Google Scholar 

  63. Shibata, K. et al. Overlearning hyperstabilizes a skill by rapidly making neurochemical processing inhibitory-dominant. Nat. Neurosci. 20, 470–475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vallentin, D., Kosche, G., Lipkind, D. & Long, M.A. Inhibition protects acquired song segments during vocal learning in zebra finches. Science 351, 267–271 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cichon, J. & Gan, W.-B. Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity. Nature 520, 180–185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, G. et al. Sleep promotes branch-specific formation of dendritic spines after learning. Science 344, 1173–1178 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Turrigiano, G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34, 89–103 (2011).

    CAS  PubMed  Google Scholar 

  68. D'amour, J.A. & Froemke, R.C. Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron 86, 514–528 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bloodgood, B.L., Sharma, N., Browne, H.A., Trepman, A.Z. & Greenberg, M.E. The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition. Nature 503, 121–125 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Marder, E., O'Leary, T. & Shruti, S. Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu. Rev. Neurosci. 37, 329–346 (2014).

    CAS  PubMed  Google Scholar 

  71. Bargmann, C.I. & Marder, E. From the connectome to brain function. Nat. Methods 10, 483–490 (2013).

    CAS  PubMed  Google Scholar 

  72. Kruglikov, I. & Rudy, B. Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron 58, 911–924 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Marlin, B.J., Mitre, M., D'amour, J.A., Chao, M.V. & Froemke, R.C. Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature 520, 499–504 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hangya, B., Ranade, S.P., Lorenc, M. & Kepecs, A. Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162, 1155–1168 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pinto, L. et al. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat. Neurosci. 16, 1857–1863 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chubykin, A.A., Roach, E.B., Bear, M.F. & Shuler, M.G.H. A cholinergic mechanism for reward timing within primary visual cortex. Neuron 77, 723–735 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Goard, M. & Dan, Y. Basal forebrain activation enhances cortical coding of natural scenes. Nat. Neurosci. 12, 1444–1449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sara, S.J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10, 211–223 (2009).

    CAS  PubMed  Google Scholar 

  79. Bouret, S. & Sara, S.J. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 28, 574–582 (2005).

    CAS  PubMed  Google Scholar 

  80. Aston-Jones, G. & Cohen, J.D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    CAS  PubMed  Google Scholar 

  81. Dayan, P. & Huys, Q.J.M. Serotonin in affective control. Annu. Rev. Neurosci. 32, 95–126 (2009).

    CAS  PubMed  Google Scholar 

  82. Seamans, J.K. & Yang, C.R. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 74, 1–58 (2004).

    CAS  PubMed  Google Scholar 

  83. Huang, G.Z. & Woolley, C.S. Estradiol acutely suppresses inhibition in the hippocampus through a sex-specific endocannabinoid and mGluR-dependent mechanism. Neuron 74, 801–808 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mitre, M. et al. A distributed network for social cognition enriched for oxytocin receptors. J. Neurosci. 36, 2517–2535 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bakin, J.S. & Weinberger, N.M. Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc. Natl. Acad. Sci. USA 93, 11219–11224 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kilgard, M.P. & Merzenich, M.M. Cortical map reorganization enabled by nucleus basalis activity. Science 279, 1714–1718 (1998).

    CAS  PubMed  Google Scholar 

  87. Froemke, R.C. et al. Long-term modification of cortical synapses improves sensory perception. Nat. Neurosci. 16, 79–88 (2013).

    CAS  PubMed  Google Scholar 

  88. Letzkus, J.J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011).

    CAS  PubMed  Google Scholar 

  89. Reed, A. et al. Cortical map plasticity improves learning but is not necessary for improved performance. Neuron 70, 121–131 (2011).

    CAS  PubMed  Google Scholar 

  90. Znamenskiy, P. & Zador, A.M. Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination. Nature 497, 482–485 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Xiong, Q., Znamenskiy, P. & Zador, A.M. Selective corticostriatal plasticity during acquisition of an auditory discrimination task. Nature 521, 348–351 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Nelson, A. & Mooney, R. The basal forebrain and motor cortex provide convergent yet distinct movement-related inputs to the auditory cortex. Neuron 90, 635–648 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Xiang, Z., Huguenard, J.R. & Prince, D.A. Cholinergic switching within neocortical inhibitory networks. Science 281, 985–988 (1998).

    CAS  PubMed  Google Scholar 

  94. Kawaguchi, Y. Selective cholinergic modulation of cortical GABAergic cell subtypes. J. Neurophysiol. 78, 1743–1747 (1997).

    CAS  PubMed  Google Scholar 

  95. Dayan, P. Twenty-five lessons from computational neuromodulation. Neuron 76, 240–256 (2012).

    CAS  PubMed  Google Scholar 

  96. Schwarz, L.A. et al. Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature 524, 88–92 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kebschull, J.M. et al. High-throughput mapping of single-neuron projections by sequencing of barcoded RNA. Neuron 91, 975–987 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Woodward, D.J., Moises, H.C., Waterhouse, B.D., Hoffer, B.J. & Freedman, R. Modulatory actions of norepinephrine in the central nervous system. Fed. Proc. 38, 2109–2116 (1979).

    CAS  PubMed  Google Scholar 

  99. Martins, A.R.O. & Froemke, R.C. Coordinated forms of noradrenergic plasticity in the locus coeruleus and primary auditory cortex. Nat. Neurosci. 18, 1483–1492 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Manunta, Y. & Edeline, J.-M. Noradrenergic induction of selective plasticity in the frequency tuning of auditory cortex neurons. J. Neurophysiol. 92, 1445–1463 (2004).

    CAS  PubMed  Google Scholar 

  101. Paspalas, C.D. & Papadopoulos, G.C. Noradrenergic innervation of peptidergic interneurons in the rat visual cortex. Cereb. Cortex 9, 844–853 (1999).

    CAS  PubMed  Google Scholar 

  102. Sara, S.J. & Segal, M. Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: implications for cognition. Prog. Brain Res. 88, 571–585 (1991).

    CAS  PubMed  Google Scholar 

  103. McGinley, M.J., David, S.V. & McCormick, D.A. Cortical membrane potential signature of optimal states for sensory signal detection. Neuron 87, 179–192 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Tritsch, N.X. & Sabatini, B.L. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76, 33–50 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bao, S., Chan, V.T. & Merzenich, M.M. Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412, 79–83 (2001).

    CAS  PubMed  Google Scholar 

  106. Constantinidis, C., Williams, G.V. & Goldman-Rakic, P.S. A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat. Neurosci. 5, 175–180 (2002).

    CAS  PubMed  Google Scholar 

  107. Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498, 363–366 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pinto, L. & Dan, Y. Cell-type-specific activity in prefrontal cortex during goal-directed behavior. Neuron 87, 437–450 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim, D. et al. Distinct roles of parvalbumin- and somatostatin-expressing interneurons in working memory. Neuron 92, 902–915 (2016).

    CAS  PubMed  Google Scholar 

  110. Gao, W.-J., Wang, Y. & Goldman-Rakic, P.S. Dopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex. J. Neurosci. 23, 1622–1630 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gao, W.-J. & Goldman-Rakic, P.S. Selective modulation of excitatory and inhibitory microcircuits by dopamine. Proc. Natl. Acad. Sci. USA 100, 2836–2841 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gorelova, N., Seamans, J.K. & Yang, C.R. Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J. Neurophysiol. 88, 3150–3166 (2002).

    CAS  PubMed  Google Scholar 

  113. Karunakaran, S. et al. PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation. Nat. Neurosci. 19, 454–464 (2016).

    CAS  PubMed  Google Scholar 

  114. Puig, M.V. & Gulledge, A.T. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol. Neurobiol. 44, 449–464 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lladó-Pelfort, L., Santana, N., Ghisi, V., Artigas, F. & Celada, P. 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb. Cortex 22, 1487–1497 (2012).

    PubMed  Google Scholar 

  116. Lewis, D.A. Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr. Opin. Neurobiol. 26, 22–26 (2014).

    CAS  PubMed  Google Scholar 

  117. Schmid, L.C. et al. Dysfunction of somatostatin-positive interneurons associated with memory deficits in an Alzheimer's disease model. Neuron 92, 114–125 (2016).

    CAS  PubMed  Google Scholar 

  118. Verret, L. et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sasaki, S., Huda, K., Inoue, T., Miyata, M. & Imoto, K. Impaired feedforward inhibition of the thalamocortical projection in epileptic Ca2+ channel mutant mice, tottering. J. Neurosci. 26, 3056–3065 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Paz, J.T. et al. A new mode of corticothalamic transmission revealed in the Gria4−/− model of absence epilepsy. Nat. Neurosci. 14, 1167–1173 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Paz, J.T. & Huguenard, J.R. Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat. Neurosci. 18, 351–359 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Rossignol, E., Kruglikov, I., van den Maagdenberg, A.M.J.M., Rudy, B. & Fishell, G. CaV 2.1 ablation in cortical interneurons selectively impairs fast-spiking basket cells and causes generalized seizures. Ann. Neurol. 74, 209–222 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Tai, C., Abe, Y., Westenbroek, R.E., Scheuer, T. & Catterall, W.A. Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proc. Natl. Acad. Sci. USA 111, E3139–E3148 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Khoshkhoo, S., Vogt, D. & Sohal, V.S. Dynamic, cell-type-specific roles for GABAergic interneurons in a mouse model of optogenetically inducible seizures. Neuron 93, 291–298 (2017).

    CAS  PubMed  Google Scholar 

  125. Chao, H.-T. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263–269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ure, K. et al. Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome. Elife 5, e14198 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Ito-Ishida, A., Ure, K., Chen, H., Swann, J.W. & Zoghbi, H.Y. Loss of MeCP2 in parvalbumin-and somatostatin-expressing neurons in mice leads to distinct Rett syndrome-like phenotypes. Neuron 88, 651–658 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Dimidschstein, J. et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat. Neurosci. 19, 1743–1749 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Buzsáki, G. & Wang, X.-J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225 (2012).

    PubMed  PubMed Central  Google Scholar 

  130. Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224 (2009).

    CAS  PubMed  Google Scholar 

  131. Sohal, V.S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cardin, J.A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Veit, J., Hakim, R., Jadi, M.P., Sejnowski, T.J. & Adesnik, H. Cortical gamma band synchronization through somatostatin interneurons. Nat. Neurosci. 20, 951–959 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Uhlhaas, P.J. & Singer, W. Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11, 100–113 (2010).

    CAS  PubMed  Google Scholar 

  136. Belforte, J.E. et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat. Neurosci. 13, 76–83 (2010).

    CAS  PubMed  Google Scholar 

  137. Carlén, M. et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol. Psychiatry 17, 537–548 (2012).

    PubMed  Google Scholar 

  138. Cho, K.K.A. et al. Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6+/− mice. Neuron 85, 1332–1343 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gillespie, A.K. et al. Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples. Neuron 90, 740–751 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Iaccarino, H.F. et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540, 230–235 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Xie, Y., Chen, S., Wu, Y. & Murphy, T.H. Prolonged deficits in parvalbumin neuron stimulation-evoked network activity despite recovery of dendritic structure and excitability in the somatosensory cortex following global ischemia in mice. J. Neurosci. 34, 14890–14900 (2014).

    PubMed  Google Scholar 

  142. Martínez-Cerdeño, V. et al. Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats. Cell Stem Cell 6, 238–250 (2010).

    PubMed  PubMed Central  Google Scholar 

  143. Lin, F.G., Galindo-Leon, E.E., Ivanova, T.N., Mappus, R.C. & Liu, R.C. A role for maternal physiological state in preserving auditory cortical plasticity for salient infant calls. Neuroscience 247, 102–116 (2013).

    CAS  PubMed  Google Scholar 

  144. He, M. et al. Strategies and tools for combinatorial targeting of GABAergic neurons in mouse cerebral cortex. Neuron 92, 555 (2016).

    CAS  PubMed  Google Scholar 

  145. Wertz, A. et al. Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349, 70–74 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (R01 NS091010A, R01 EY025349, R01 DC014690 and U01 NS094342), Pew Charitable Trusts, David & Lucile Packard Foundation, McKnight Foundation and New York Stem Cell Foundation to T.K., from the NIH (DC009635 and DC012557), Pew Charitable Trusts, McKnight Foundation and HHMI Faculty Scholars Program to R.C.F., and from the NIH (DC05014) to K.V.K.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert C Froemke or Takaki Komiyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hattori, R., Kuchibhotla, K., Froemke, R. et al. Functions and dysfunctions of neocortical inhibitory neuron subtypes. Nat Neurosci 20, 1199–1208 (2017). https://doi.org/10.1038/nn.4619

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4619

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing