Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Analysis of genome-wide association data highlights candidates for drug repositioning in psychiatry

Abstract

Knowledge of psychiatric disease genetics has advanced rapidly during the past decade with the advent of genome-wide association studies (GWAS). However, less progress has been made in harnessing these data to reveal new therapies. Here we propose a framework for drug repositioning by comparing transcriptomes imputed from GWAS data with drug-induced gene expression profiles from the Connectivity Map database and apply this approach to seven psychiatric disorders. We found a number of repositioning candidates, many supported by preclinical or clinical evidence. Repositioning candidates for a number of disorders were also significantly enriched for known psychiatric medications or therapies considered in clinical trials. For example, candidates for schizophrenia were enriched for antipsychotics, while those for bipolar disorder were enriched for both antipsychotics and antidepressants. These findings provide support for the usefulness of GWAS data in guiding drug discovery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hyman, S.E. Psychiatric drug development: diagnosing a crisis. Cerebrum 2013, 5 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. Breen, G. et al. Translating genome-wide association findings into new therapeutics for psychiatry. Nat. Neurosci. 19, 1392–1396 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dudley, J.T., Deshpande, T. & Butte, A.J. Exploiting drug-disease relationships for computational drug repositioning. Brief. Bioinform. 12, 303–311 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanseau, P. et al. Use of genome-wide association studies for drug repositioning. Nat. Biotechnol. 30, 317–320 (2012).

    CAS  PubMed  Google Scholar 

  5. Lencz, T. & Malhotra, A.K. Targeting the schizophrenia genome: a fast track strategy from GWAS to clinic. Mol. Psychiatry 20, 820–826 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao, C. & Moult, J. GWAS and drug targets. BMC Genomics 15 (Suppl. 4), S5 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Nelson, M.R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    CAS  PubMed  Google Scholar 

  8. Talevi, A. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 6, 205 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Dudley, J.T. et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. Med. 3, 96ra76 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sirota, M. et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl. Med. 3, 96ra77 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Raghavan, R. et al. Drug discovery using clinical outcome-based Connectivity Mapping: application to ovarian cancer. BMC Genomics 17, 811 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Barbeira, A. et al. MetaXcan: summary statistics based gene-level association method infers accurate PrediXcan results. Preprint at https://doi.org/10.1101/045260 (2016).

  14. Litman, R.E., Su, T.P., Potter, W.Z., Hong, W.W. & Pickar, D. Idazoxan and response to typical neuroleptics in treatment-resistant schizophrenia. Comparison with the atypical neuroleptic, clozapine. Br. J. Psychiatry 168, 571–579 (1996).

    CAS  PubMed  Google Scholar 

  15. Jockers-Scherübl, M.C. et al. Negative symptoms of schizophrenia are improved by the addition of paroxetine to neuroleptics: a double-blind placebo-controlled study. Int. Clin. Psychopharmacol. 20, 27–31 (2005).

    PubMed  Google Scholar 

  16. Foye, W.O., Lemke, T.L. & Williams, D.A. Foye's Principles of Medicinal Chemistry (Lippincott Williams & Wilkins, 2013).

  17. Rahmanzadeh, R. et al. Effect of bumetanide, a selective NKCC1 inhibitor, on hallucinations of schizophrenic patients; a double-blind randomized clinical trial. Schizophr. Res. 184, 145–146 (2017).

    PubMed  Google Scholar 

  18. Sigalas, P.D., Garg, H., Watson, S., McAllister-Williams, R.H. & Ferrier, I.N. Metyrapone in treatment-resistant depression. Ther. Adv. Psychopharmacol. 2, 139–149 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown, E.S., Bobadilla, L. & Rush, A.J. Ketoconazole in bipolar patients with depressive symptoms: a case series and literature review. Bipolar Disord. 3, 23–29 (2001).

    CAS  PubMed  Google Scholar 

  20. Pacchiarotti, I. et al. The International Society for Bipolar Disorders (ISBD) task force report on antidepressant use in bipolar disorders. Am. J. Psychiatry 170, 1249–1262 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. Muneer, A. Bipolar disorder: role of inflammation and the development of disease biomarkers. Psychiatry Investig. 13, 18–33 (2016).

    CAS  PubMed  Google Scholar 

  22. Henderson, D.C., Vincenzi, B., Andrea, N.V., Ulloa, M. & Copeland, P.M. Pathophysiological mechanisms of increased cardiometabolic risk in people with schizophrenia and other severe mental illnesses. Lancet Psychiatry 2, 452–464 (2015).

    PubMed  Google Scholar 

  23. Parsaik, A.K. et al. Statins use and risk of depression: a systematic review and meta-analysis. J. Affect. Disord. 160, 62–67 (2014).

    CAS  PubMed  Google Scholar 

  24. Redlich, C. et al. Statin use and risk of depression: a Swedish national cohort study. BMC Psychiatry 14, 348 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Malison, R.T., Price, L.H., Nestler, E.J., Heninger, G.R. & Duman, R.S. Efficacy of papaverine addition for treatment-refractory major depression. Am. J. Psychiatry 154, 579–580 (1997).

    CAS  PubMed  Google Scholar 

  26. Furey, M.L. & Drevets, W.C. Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch. Gen. Psychiatry 63, 1121–1129 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Spielmans, G.I. et al. Adjunctive atypical antipsychotic treatment for major depressive disorder: a meta-analysis of depression, quality of life, and safety outcomes. PLoS Med. 10, e1001403 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. Poleszak, E. et al. Effects of ifenprodil on the antidepressant-like activity of NMDA ligands in the forced swim test in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 46, 29–35 (2013).

    CAS  PubMed  Google Scholar 

  29. Heresco-Levy, U. et al. A randomized add-on trial of high-dose D-cycloserine for treatment-resistant depression. Int. J. Neuropsychopharmacol. 16, 501–506 (2013).

    CAS  PubMed  Google Scholar 

  30. Ansseau, M., Doumont, A., Thiry, D. & Gelders, Y. Pilot study of a specific serotonergic antagonist, pirenperone, in the treatment of anxiety disorders. Acta Psychiatr. Belg. 83, 517–524 (1983).

    CAS  PubMed  Google Scholar 

  31. Krystal, A.D., Sutherland, J. & Hochman, D.W. Loop diuretics have anxiolytic effects in rat models of conditioned anxiety. PLoS One 7, e35417 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Spinosa, Hde.S., Stilck, S.R. & Bernardi, M.M. Possible anxiolytic effects of ivermectin in rats. Vet. Res. Commun. 26, 309–321 (2002).

    Google Scholar 

  33. Pittler, M.H. & Ernst, E. Efficacy of kava extract for treating anxiety: systematic review and meta-analysis. J. Clin. Psychopharmacol. 20, 84–89 (2000).

    CAS  PubMed  Google Scholar 

  34. Lu, D., Song, H., Hao, Z., Wu, T. & McCleery, J. Naftidrofuryl for dementia. Cochrane Database Syst. Rev. (12): CD002955 (2011).

  35. Szatmari, S.Z. & Whitehouse, P.J. Vinpocetine for cognitive impairment and dementia. Cochrane Database Syst. Rev. (1): CD003119 (2003).

  36. Imbimbo, B.P., Solfrizzi, V. & Panza, F. Are NSAIDs useful to treat Alzheimer's disease or mild cognitive impairment? Front. Aging Neurosci. 2, 19 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Silva, R.R., Munoz, D.M. & Alpert, M. Carbamazepine use in children and adolescents with features of attention-deficit hyperactivity disorder: a meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 35, 352–358 (1996).

    CAS  PubMed  Google Scholar 

  38. Martin, C.A. et al. Lobeline effects on cognitive performance in adult ADHD. J. Atten. Disord. https://dx.doi.org/10.1177/1087054713497791 (2013).

  39. Zametkin, A., Rapoport, J.L., Murphy, D.L., Linnoila, M. & Ismond, D. Treatment of hyperactive children with monoamine oxidase inhibitors. I. Clinical efficacy. Arch. Gen. Psychiatry 42, 962–966 (1985).

    CAS  PubMed  Google Scholar 

  40. Akhondzadeh, S. et al. Double-blind placebo-controlled trial of pentoxifylline added to risperidone: effects on aberrant behavior in children with autism. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 32–36 (2010).

    CAS  PubMed  Google Scholar 

  41. Mohammadi, M.R. et al. Double-blind, placebo-controlled trial of risperidone plus amantadine in children with autism: a 10-week randomized study. Clin. Neuropharmacol. 36, 179–184 (2013).

    CAS  PubMed  Google Scholar 

  42. Gkogkas, C.G. et al. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493, 371–377 (2013).

    CAS  PubMed  Google Scholar 

  43. Kentsis, A., Topisirovic, I., Culjkovic, B., Shao, L. & Borden, K.L. Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc. Natl. Acad. Sci. USA 101, 18105–18110 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. de Jong, S., Vidler, L.R., Mokrab, Y., Collier, D.A. & Breen, G. Gene-set analysis based on the pharmacological profiles of drugs to identify repurposing opportunities in schizophrenia. J. Psychopharmacol. 30, 826–830 (2016).

    CAS  PubMed  Google Scholar 

  45. Gaspar, H.A. & Breen, G. Pathways analyses of schizophrenia GWAS focusing on known and novel drug targets. Preprint at https://doi.org/10.1101/091264 (2016).

  46. Ruderfer, D.M. et al. Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach. Lancet Psychiatry 3, 350–357 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Breier, A. Anxiety disorders and antipsychotic drugs: a pressing need for more research. Am. J. Psychiatry 168, 1012–1014 (2011).

    PubMed  Google Scholar 

  48. Singh, S.P., Singh, V., Kar, N. & Chan, K. Efficacy of antidepressants in treating the negative symptoms of chronic schizophrenia: meta-analysis. Br. J. Psychiatry 197, 174–179 (2010).

    PubMed  Google Scholar 

  49. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  50. Lieblich, S.M. et al. High heterogeneity and low reliability in the diagnosis of major depression will impair the development of new drugs. BJPsych Open 1, e5–e7 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Gamazon, E.R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

  54. Battle, A. et al. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 24, 14–24 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ripke, S. et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry 18, 497–511 (2013).

    CAS  PubMed  Google Scholar 

  56. CONVERGE consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523, 588–591 (2015).

  57. Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983 (2011).

  58. Lambert, J.C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45, 1452–1458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol. Psychiatry 21, 1485 (2016).

    CAS  PubMed  Google Scholar 

  60. Autism Spectrum Disorder Working Group of the Psychiatry Genomics Consortium. ASD GWAS - 2015 dataset. Psychiatric Genomics Consortium http://www.med.unc.edu/pgc/results-and-downloads (2015).

  61. Neale, B.M. et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 49, 884–897 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. Ritchie, M.E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Cheng, J., Yang, L., Kumar, V. & Agarwal, P. Systematic evaluation of connectivity map for disease indications. Genome Med. 6, 540 (2014).

    PubMed  Google Scholar 

  64. de Leeuw, C.A., Mooij, J.M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLOS Comput. Biol. 11, e1004219 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. de Leeuw, C.A., Neale, B.M., Heskes, T. & Posthuma, D. The statistical properties of gene-set analysis. Nat. Rev. Genet. 17, 353–364 (2016).

    CAS  PubMed  Google Scholar 

  66. Kanba, S. Although antidepressants and anxiolytics are frequently used together to treat depression in the acute phase, how effective is the concomitant use of these drugs? J. Psychiatry Neurosci. 29, 485 (2004).

    PubMed  PubMed Central  Google Scholar 

  67. Wei, W.Q. et al. Development and evaluation of an ensemble resource linking medications to their indications. J. Am. Med. Inform. Assoc. 20, 954–961 (2013).

    PubMed  PubMed Central  Google Scholar 

  68. Fisher, R.A. Statistical Methods for Research Workers (Oliver and Boyd, 1925).

  69. Tippett, L.H.C. The Methods of Statistics; an Introduction Mainly for Workers in the Biological Sciences (Williams & Norgate Ltd., 1931).

  70. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  71. Sham, P.C. & Purcell, S.M. Statistical power and significance testing in large-scale genetic studies. Nat. Rev. Genet. 15, 335–346 (2014).

    CAS  PubMed  Google Scholar 

  72. Glickman, M.E., Rao, S.R. & Schultz, M.R. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin. Epidemiol. 67, 850–857 (2014).

    PubMed  Google Scholar 

  73. Efron, B. Simultaneous inference: when should hypothesis testing problems be combined? Ann. Appl. Stat. 2, 197–223 (2008).

    Google Scholar 

Download references

Acknowledgements

We would like to thank C.-W. Chan and C.-F. Wong for assistance in drug annotations. We are grateful to S.K.W. Tsui and S.S.Y. Lui for discussions and to the Hong Kong Bioinformatics Centre for computing support. This study was partially supported by the Lo-Kwee Seong Biomedical Research Fund and a Direct Grant from the Chinese University of Hong Kong to H.-C.S.

Author information

Authors and Affiliations

Authors

Contributions

H.-C.S. conceived and designed the study. H.-C.S. and C.K.-L.C. performed data analyses. H.-C.S. interpreted the data. H.-C.S., C.K.-L.C., W.-T.C., K.-S.H., C.-P.L. and S.H.-Y.Y. performed drug annotations (here W.-T.C., K.-S.H., C.-P.L. and S.H.-Y.Y. are listed in alphabetical order). P.-C.S. provided advice on statistical and computational analyses. H.-C.S. wrote the manuscript and supervised the study. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Hon-Cheong So.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note and Supplementary Tables 1 and 10–12 (PDF 512 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Supplementary Table 2

Manually curated lists of top 15 drug repositioning candidates for each brain region for schizophrenia (XLSX 44 kb)

Supplementary Table 3

Manually curated lists of top 15 drug repositioning candidates for each brain region for bipolar disorder (XLSX 40 kb)

Supplementary Table 4

Manually curated lists of top 15 drug repositioning candidates for each brain region for major depressive disorder with GWAS data from the Psychiatric Genomics Consortium (XLSX 42 kb)

Supplementary Table 5

Manually curated lists of top 15 drug repositioning candidates for each brain region for major depressive disorder with GWAS data from the CONVERGE Consortium (XLSX 41 kb)

Supplementary Table 6

Manually curated lists of top 15 drug repositioning candidates for each brain region for Alzheimer's disease (XLSX 44 kb)

Supplementary Table 7

Manually curated lists of top 15 drug repositioning candidates for each brain region for anxiety disorders (XLSX 40 kb)

Supplementary Table 8

Manually curated lists of top 15 drug repositioning candidates for each brain region for attention deficit hyperactivity disorder (XLSX 43 kb)

Supplementary Table 9

Manually curated lists of top 15 drug repositioning candidates for each brain region for autistic spectrum disorders (XLSX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

So, HC., Chau, CL., Chiu, WT. et al. Analysis of genome-wide association data highlights candidates for drug repositioning in psychiatry. Nat Neurosci 20, 1342–1349 (2017). https://doi.org/10.1038/nn.4618

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4618

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research