Abstract
Alzheimer's disease (AD) is characterized by severe neuronal loss; however, the mechanisms by which neurons die remain elusive. Necroptosis, a programmed form of necrosis, is executed by the mixed lineage kinase domain-like (MLKL) protein, which is triggered by receptor-interactive protein kinases (RIPK) 1 and 3. We found that necroptosis was activated in postmortem human AD brains, positively correlated with Braak stage, and inversely correlated with brain weight and cognitive scores. In addition, we found that the set of genes regulated by RIPK1 overlapped significantly with multiple independent AD transcriptomic signatures, indicating that RIPK1 activity could explain a substantial portion of transcriptomic changes in AD. Furthermore, we observed that lowering necroptosis activation reduced cell loss in a mouse model of AD. We anticipate that our findings will spur a new area of research in the AD field focused on developing new therapeutic strategies aimed at blocking its activation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
MLKL deficiency protects against low-grade, sterile inflammation in aged mice
Cell Death & Differentiation Open Access 08 February 2023
-
LATE-NC aggravates GVD-mediated necroptosis in Alzheimer’s disease
Acta Neuropathologica Communications Open Access 03 September 2022
-
Hyperphosphorylated tau mediates neuronal death by inducing necroptosis and inflammation in Alzheimer’s disease
Journal of Neuroinflammation Open Access 15 August 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout








References
Alzheimer's Association. 2015 Alzheimer's disease facts and figures. Alzheimers Dement. 11, 332–384 (2015).
Liu-Seifert, H. et al. Cognitive and functional decline and their relationship in patients with mild Alzheimer's dementia. J. Alzheimers Dis. 43, 949–955 (2015).
Zahodne, L.B., Manly, J.J., MacKay-Brandt, A. & Stern, Y. Cognitive declines precede and predict functional declines in aging and Alzheimer's disease. PLoS One 8, e73645 (2013).
Querfurth, H.W. & LaFerla, F.M. Alzheimer's disease. N. Engl. J. Med. 362, 329–344 (2010).
Khan, S.S. & Bloom, G.S. Tau: the center of a signaling nexus in Alzheimer's disease. Front. Neurosci. 10, 31 (2016).
Serrano-Pozo, A., Frosch, M.P., Masliah, E. & Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1, a006189 (2011).
Caselli, R.J., Beach, T.G., Yaari, R. & Reiman, E.M. Alzheimer's disease a century later. J. Clin. Psychiatry 67, 1784–1800 (2006).
Lalaoui, N., Lindqvist, L.M., Sandow, J.J. & Ekert, P.G. The molecular relationships between apoptosis, autophagy and necroptosis. Semin. Cell Dev. Biol. 39, 63–69 (2015).
Hanson, B. Necroptosis: a new way of dying? Cancer Biol. Ther. 17, 899–910 (2016).
Linkermann, A. & Green, D.R. Necroptosis. N. Engl. J. Med. 370, 455–465 (2014).
Cho, Y.S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).
Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700–714 (2010).
Ofengeim, D. et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 10, 1836–1849 (2015).
Re, D.B. et al. Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81, 1001–1008 (2014).
Ito, Y. et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353, 603–608 (2016).
Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339–350 (2012).
Costes, S.V. et al. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys. J. 86, 3993–4003 (2004).
Liang, W.S. et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol. Genomics 28, 311–322 (2007).
Liang, W.S. et al. Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc. Natl. Acad. Sci. USA 105, 4441–4446 (2008).
Braak, H. & Braak, E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–278, discussion 278–284 (1995).
Giacobini, E. & Gold, G. Alzheimer disease therapy—moving from amyloid-β to tau. Nat. Rev. Neurol. 9, 677–686 (2013).
Arevalo-Rodriguez, I. et al. Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev. (3): CD010783 (2015).
Millstein, J., Zhang, B., Zhu, J. & Schadt, E.E. Disentangling molecular relationships with a causal inference test. BMC Genet. 10, 23 (2009).
Blalock, E.M. et al. Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc. Natl. Acad. Sci. USA 101, 2173–2178 (2004).
Hitomi, J. et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311–1323 (2008).
Liu, Q. et al. Akt and mTOR mediate programmed necrosis in neurons. Cell Death Dis. 5, e1084 (2014).
Oakley, H. et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006).
Jankowsky, J.L. et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13, 159–170 (2004).
Rodriguez, D.A. et al. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ. 23, 76–88 (2016).
Dickerson, B.C. et al. Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 76, 1395–1402 (2011).
Popescu, B.O. & Ankarcrona, M. Mechanisms of cell death in Alzheimer's disease: role of presenilins. J. Alzheimers Dis. 6, 123–128 (2004).
Bancher, C., Lassmann, H., Breitschopf, H. & Jellinger, K.A. Mechanisms of cell death in Alzheimer's disease. J. Neural Transm. Suppl. 50, 141–152 (1997).
Zhu, X., Raina, A.K., Perry, G. & Smith, M.A. Apoptosis in Alzheimer disease: a mathematical improbability. Curr. Alzheimer Res. 3, 393–396 (2006).
Niikura, T., Tajima, H. & Kita, Y. Neuronal cell death in Alzheimer's disease and a neuroprotective factor, humanin. Curr. Neuropharmacol. 4, 139–147 (2006).
Cotman, C.W. & Su, J.H. Mechanisms of neuronal death in Alzheimer's disease. Brain Pathol. 6, 493–506 (1996).
Abraham, M.C. & Shaham, S. Death without caspases, caspases without death. Trends Cell Biol. 14, 184–193 (2004).
Snigdha, S., Smith, E.D., Prieto, G.A. & Cotman, C.W. Caspase-3 activation as a bifurcation point between plasticity and cell death. Neurosci. Bull. 28, 14–24 (2012).
Stadelmann, C., Brück, W., Bancher, C., Jellinger, K. & Lassmann, H. Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apoptosis. J. Neuropathol. Exp. Neurol. 57, 456–464 (1998).
Perry, G., Nunomura, A., Lucassen, P., Lassmann, H. & Smith, M.A. Apoptosis and Alzheimer's disease. Science 282, 1268–1269 (1998).
Vanden Berghe, T., Kaiser, W.J., Bertrand, M.J. & Vandenabeele, P. Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol. Cell. Oncol. 2, e975093 (2015).
Zheng, C., Zhou, X.W. & Wang, J.Z. The dual roles of cytokines in Alzheimer's disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Transl. Neurodegener. 5, 7 (2016).
Dillon, C.P. et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157, 1189–1202 (2014).
Kaiser, W.J. et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl. Acad. Sci. USA 111, 7753–7758 (2014).
Dondelinger, Y. et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 7, 971–981 (2014).
Su, L. et al. A plug release mechanism for membrane permeation by MLKL. Structure 22, 1489–1500 (2014).
Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014).
Nelson, P.T. et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71, 362–381 (2012).
Beach, T.G. et al. The Sun Health Research Institute Brain Donation Program: description and experience, 1987–2007. Cell Tissue Bank. 9, 229–245 (2008).
Caccamo, A., Ferreira, E., Branca, C. & Oddo, S. p62 improves AD-like pathology by increasing autophagy. Mol. Psychiatry 22, 865–873 (2017).
Kauffmann, A., Gentleman, R. & Huber, W. arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics 25, 415–416 (2009).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
Du, P., Kibbe, W.A. & Lin, S.M. lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008).
Irizarry, R.A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).
Ritchie, M.E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
Kersey, P.J. et al. Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res. 44, D1, D574–D580 (2016).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Liao, Y., Smyth, G.K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).
Liao, Y., Smyth, G.K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
Law, C.W., Chen, Y., Shi, W. & Smyth, G.K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Van der Auwera, G.A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 1–33 (2013).
Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 (Bethesda) 1, 457–470 (2011).
Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).
Auton, A. et al. Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
Shabalin, A.A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).
Mirra, S.S. et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 41, 479–486 (1991).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).
Stenson, P.D. et al. The Human Gene Mutation Database: 2008 update. Genome Med. 1, 13 (2009).
Hamosh, A., Scott, A.F., Amberger, J., Valle, D. & McKusick, V.A. Online Mendelian Inheritance in Man (OMIM). Hum. Mutat. 15, 57–61 (2000).
Landrum, M.J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D1, D862–D868 (2016).
Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).
Rouillard, A.D. et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database (Oxford) https://dx.doi.org/10.1093/database/baw100 (2016).
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize Implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
Velazquez, R., Shaw, D.M., Caccamo, A. & Oddo, S. Pim1 inhibition as a novel therapeutic strategy for Alzheimer's disease. Mol. Neurodegener. 11, 52 (2016).
Acknowledgements
We thank E. Reiman for discussion and assistance, P. Coleman for kindly providing access to his expressing data set. We thank A. Rodin and A. Tran for contributing to the editing of the manuscript. We thank D. Green for kindly providing the MLKL constructs. We are grateful to the Banner Sun Health Research Institute Brain and Body Donation Program of Sun City, Arizona for providing the human tissue. Data for the RIPK1 causal regulatory gene network were generated from postmortem brain tissue collected through the Mount Sinai VA Medical Center Brain Bank and were provided by E. Schadt. The computational resources and staff expertise provided by the Department of Scientific Computing at the Icahn School of Medicine at Mount Sinai also contributed to this study. This work was supported by grants from the Arizona Alzheimer's Consortium and the US National Institutes of Health (R01 AG037637) to S.O., and R01 NS083801 and P50 AG016573 to K.N.G. The Brain and Body Donation Program is supported by the US National Institute of Neurological Disorders and Stroke (U24 NS072026 National Brain and Tissue Resource for Parkinson's Disease and Related Disorders), the National Institute on Aging (P30 AG19610 Arizona Alzheimer's Disease Core Center), the Arizona Department of Health Services (contract 211002, Arizona Alzheimer's Research Center), the Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson's Disease Consortium), and the Michael J. Fox Foundation for Parkinson's Research.
Author information
Authors and Affiliations
Contributions
A.C. and C.B. designed and performed the experiments and analyzed the data. I.S.P. and M.J.H. performed the statistical analyses. E.F. performed the confocal imaging and quantification. W.S.L. generated the expression data from the microarray analyses used to generate the RIPK1 causal regulatory network. B.R. and J.T.D. generated the RIPK1 causal regulatory network and performed the associated gene set analysis. E.E.S. and K.N.G. performed the experiments on 5xFAD mice. R.B. performed the colocalization experiments described in Supplementary Figure 5. W.W. performed the co-immunoprecipitation experiments. S.O. conceptualized and designed the experiments, analyzed the data, and wrote the manuscript. All of the authors contributed to the preparation of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Integrated supplementary information
Supplementary Figure 1 Levels of necroptotic markers in TBS and Triton fractions
(a) Representative western blots of TBS and Triton extracts from AD and CTL patients probed with the indicated antibodies. (b-d) Quantitative analyses of the western blots. RIPK1 was not detected in the TBS fraction. For all the proteins measured, no changes were detected between the two groups. For RIPK1 triton [t(21) = 0.840, P = 0.409]; for RIPK3 TBS [t(21) = 0.402, P = 0.691]; for RIPK3 triton [t(21) = 0.357, P = 0.724]; for MLKL TBS [t(21) = 0.176, P = 0.862], for MLKL triton [t(21) = 0.065, P = 0.9491]. Data were normalized to β-actin, used as a loading control. Data are presented as box plots and were analyzed by unpaired t-test. n = 11 CTL cases and n = 12 AD cases. In the box plots, the center line represents the median value, the limits represent the 25th and 75th percentile, and the whiskers represent the minimum and maximum value of the distribution.
Supplementary Figure 2 Full blots of RIPK1 and MLKL western blots in human cases
(a-b) Proteins extracted with RIPA and UREA buffer from CTL and AD cases. Blots were probed with the indicated antibodies. The levels of the protein of interest (RIPK1 or MLKL) were normalized to β-actin for every sample, then all samples were expressed as a ratio with respect to the average of the CTL samples in the same blot. Doing so, the AD samples are expressed as a percentage change over the CTL samples. (c) Proteins from CTL and AD cases were immunoprecipitated with a RIPK1 antibody and probed with an MLKL antibody. The black arrows point to the MLKL band, the black arrowheads point to the IgG. (d) Proteins from CTL and AD cases were run in not reducing conditions and probed with an MLKL antibody. The gray arrows point to the MLKL dimers, the gray arrowheads point to the MLKL monomers. The levels of MLKL dimers were normalized to the levels of MLKL monomers for every samples. Then all the samples in the same blot were expressed as ratio with respect to the average of the CTL sample in the same blot. Doing so, the AD samples are expressed as percentage change over the CTL samples.
Supplementary Figure 3 Increased pMLKL in AD colocalize with phosphorylated tau
(a) Representative confocal images from CTL and AD cases stained with a different pMLKL antibody than the one used for Fig. 2. (b) The graph shows the quantitative analyses of the pMLKL immunoreactivity tissue [t(28) = 4.561; P < 0.0001]. (c) Representative confocal images from CTL and AD cases stained with the indicated antibodies. Statistical evaluation by Mander’s correlation, followed by Costes randomization test indicates that in CTL cases, 36.04 ± 1.5% of pMLKL immunoreactivity was located in the membrane [R(13) = 0.319 and Costes P = 0.96]. In AD cases, 52.90 ± 3.2% of pMLKL immunoreactivity was located in the membrane [R(13) = 0.365 and Costes P = 0.97]. (d) The graph shows the quantitative analyses of the colocalized pMLKL and cadherin pixels [t(28) = 6.991; P < 0.0001]. (e) Sections from AD patients were stained with the indicated antibodies. Statistical evaluation by Mander’s correlation followed by Costes randomization test indicates that 39.17 ± 3.1% of pMLKL immunoreactivity co-localized with CP13 [R(13) = 0.4155 and Costes p = 0.99]. These data confirm the data shown in Fig. 4, using a different pMLKL antibody. For all the data shown here, n = 15 CTL cases and n = 15 AD cases. Data in panels b and d were analyzed by unpaired t-test and are presented as box plots. In the box plots, the center line represents the median value, the limits represent the 25th and 75th percentile, and the whiskers represent the minimum and maximum value of the distribution.
Supplementary Figure 4 Caspase-3/pMLKL colocalization is similar between CTL and AD cases
(a) Microphotographs of CTL (n = 15 cases) and AD (n = 15 cases) brains stained with the indicated antibodies. (b), Quantitative analysis of the sections, which was obtained by Mander’s correlation followed by Costes randomization test indicates that 42.10 ± 1.9% of pMLKL immunoreactivity co-localized with Caspase-3 [R(13) = 0.6159 and Costes P = 0.965] for CTL, and 45.53 ± 2.3% [R(13) = 0.6075 and Costes P = 0.970] for AD. There was no significant difference between the two groups [t(28) = 0.319; P = 0.752). Data are presented as box plots and were analyzed by unpaired t-test. In the box plots, the center line represents the median value, the limits represent the 25th and 75th percentile, and the whiskers represent the minimum and maximum value of the distribution.
Supplementary Figure 5 pMLKL is mainly found in neurons
(a-c) Microphotographs of AD brain (n = 15) sections co-labeled with the indicated antibodies. Statistical evaluation by Mander’s correlation followed by Costes randomization test indicates that 60.22 ± 3.3% of pMLKL immunoreactivity co-localized with NeuN [R(13) = 0.583 and Costes P = 0.99], 11.14 ± 1.4% co-localized with GFAP [R(13) = 0.179 and Costes P = 0.63], and 28.00 ± 2.6% co-localized with Iba1 [R(13) = 0.578 and Costes P = 0.96].
Supplementary Figure 6 Schematic representation of the experimental design used to perform the causal inference testing.
Gene regulatory network for RIPK1 based inferred from postmortem brain tissue samples. Causal inference testing was used to determine directed regulatory links between RIPK1 and its correlated genes.
Supplementary Figure 7 Full blots showing levels of necroptotic markers in 5xFAD and APP/PS1 mice
(a) Proteins from 5xFAD mice (n = 5 mice) and littermate controls (NT; n = 7 mice), and APP/PS1 mice (n = 8) and littermate controls (WT; n = 8), were probed with the indicated antibodies. (b-d) Quantitative analyses of the blots show an increase of the kinases in the 5xFAD mice compared to control [t(10) = 2.423, P = 0.036 for RIPK1; t(10) = 2.910, P = 0.016 for MLKL; t(10) = 3.076, P = 0.012 for pMLKL]. No differences were found in the APP/PS1 mice compared to their control [t(14) = 1.245, P = 0.234 for RIPK1; t(14) = 0.807, P = 0.433 for MLKL]. (e-f) Representative confocal microphotographs of sections from 5xFAD and APP/PS1 stained with Fluro-Jade. Quantification of western blots were obtained by normalizing the protein of interest to β-actin (used as a loading control). Data are presented as box plots and were analyzed by unpaired t-test. In the box plots, the center line represents the median value, the limits represent the 25th and 75th percentile, and the whiskers represent the minimum and maximum value of the distribution.
Supplementary Figure 8 Increasing necroptosis does not change Aβ and tau pathology
(a-b) Representative hippocampal sections from APP/PS1 mice injected with the AAV expressing GFP or MLKL. Sections were stained with an Aβ42-specific antibody (n = 14 mice per group). (c-f) The graphs show soluble and insoluble Aβ40 and Aβ42 levels measured by sandwich ELISA. Panel c, t(26) = 1.197, P = 0.242. Panel d, t(26) = 0.4513, P = 0.655. Panel e, t(26) = 0.6518, P = 0.520. Panel f, t(26) = 0.8277, P = 0.415. Data are presented as box plots, and were analyzed by unpaired t-test (n = 14 mice per group). (g-j) Western blots of proteins extracted from APP/PS1-GFP (n = 7 mice) and APP/PS1-MLKL mice (n = 8 mice). Blots were probed with the indicated antibodies. The levels of Tau-5, which recognize total mouse tau, were similar between the two groups [t(13) = 0.484; P = 0.637]. The CP13 antibody, which is raised against tau phosphorylated at Ser202, recognized two bands of ~60 and ~50 kDa. Statistical analyses of both bands indicated that CP13 levels were similar between the two groups [t(13) = 0.48; P = 0.64] for both bands. Data are presented as box plots, and were analyzed by unpaired t-test. In the box plots, the center line represents the median value, the limits represent the 25th and 75th percentile, and the whiskers represent the minimum and maximum value of the distribution.
Supplementary Figure 9 Full blots for necrostatin treatments
(a-b) Proteins extracted from APP/PS1 and wild type primary neurons used for NeuN staining. Quantitative analyses are shown in Fig. 8b. (c-d) Proteins extracted from APP/PS1 and wild type primary neurons transfected with AAV-GFP. Quantitative analyses are shown in Fig. 8d. (e) Proteins extracted from 5xFAD and wild type mice. Quantitative analyses are shown in Fig. 8g. Blots were probed with the indicated antibodies.
Supplementary Figure 10 Validation of the RIPK1, RIPK3, MLKL, and pMLKL antibodies
(a) Proteins extracted from wild type cells, RIPK1 knockout cells (as a negative control), RIPK1 knockout cells transfected with a RIPK1 expressing plasmid (as a positive control), CTL and AD human cases, wild type and 5xFAD mice were probed with the RIPK1 antibody. The expected band of 73 kDa (arrow) was not present in the knockout cells. (b) Proteins extracted from wild type mice, RIPK3 knockout mice (as a negative control), wild type cells transfected with a RIPK3 expressing plasmid (as a positive control), CTL and AD human cases, wild type and 5xFAD mice, were probed with the RIPK3 antibody. The expected band of 55 kDa (arrow) was not present in the RIPK3 knockout mice and was present in the cells transfected with the RIPK3-expressing plasmid. The RIPK3 band in the positive control ran a little slower as the plasmid had a GFP tag to its C-terminal. (c) To validate the MLKL antibody, we loaded on a gel proteins extracted from wild type cells, MLKL knockout cells (as a negative control), MLKL knockout cells transfected with a MLKL-expressing plasmid (as a positive control), CTL and AD human cases, non-transgenic and 5xFAD mice. The expected band of 51 kDa (arrow) was not present in the knockout cells, but it was present when these cells were transfected with a MLKL plasmid. (d) To validate the phospho-specific MLKL antibody, we loaded on a gel protein extracted from MLKL knockout and wild type cells. As a positive control, cells were treated with 1 ng/mL TNFα and 50 μM Caspase inhibitor Z-VAD-FMK to induce necroptosis. (e) To validate the RIPK1 and MLKL antibodies for immunohistochemistry, we used HAP1 cells where the respective genes were knocked out. As a control (WT) we used the parental cell line. To validate the RIPK3 antibody for immunohistochemistry, we used mouse primary fibroblasts isolated from RIPK3 knockout and wild type mice. (f) To validate the pMLKL antibody for immunohistochemistry, we used HAP-1 cells and induced necroptosis activation.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–10 and Supplementary Tables 1–5 (PDF 2333 kb)
Supplementary Data Set 1
Gene Expression File 1 (XLSX 18 kb)
Supplementary Data Set 2
Gene Expression File 2 (XLSX 315 kb)
Supplementary Data Set 3
Gene Expression File 3 (XLSX 503 kb)
Rights and permissions
About this article
Cite this article
Caccamo, A., Branca, C., Piras, I. et al. Necroptosis activation in Alzheimer's disease. Nat Neurosci 20, 1236–1246 (2017). https://doi.org/10.1038/nn.4608
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn.4608
This article is cited by
-
Friend or foe: role of pathological tau in neuronal death
Molecular Psychiatry (2023)
-
MLKL deficiency protects against low-grade, sterile inflammation in aged mice
Cell Death & Differentiation (2023)
-
Pyroptosis in Alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons
Acta Neuropathologica (2023)
-
LATE-NC aggravates GVD-mediated necroptosis in Alzheimer’s disease
Acta Neuropathologica Communications (2022)
-
The role of DHCR24 in the pathogenesis of AD: re-cognition of the relationship between cholesterol and AD pathogenesis
Acta Neuropathologica Communications (2022)