The neural correlates of dreaming


Consciousness never fades during waking. However, when awakened from sleep, we sometimes recall dreams and sometimes recall no experiences. Traditionally, dreaming has been identified with rapid eye-movement (REM) sleep, characterized by wake-like, globally 'activated', high-frequency electroencephalographic activity. However, dreaming also occurs in non-REM (NREM) sleep, characterized by prominent low-frequency activity. This challenges our understanding of the neural correlates of conscious experiences in sleep. Using high-density electroencephalography, we contrasted the presence and absence of dreaming in NREM and REM sleep. In both NREM and REM sleep, reports of dream experience were associated with local decreases in low-frequency activity in posterior cortical regions. High-frequency activity in these regions correlated with specific dream contents. Monitoring this posterior 'hot zone' in real time predicted whether an individual reported dreaming or the absence of dream experiences during NREM sleep, suggesting that it may constitute a core correlate of conscious experiences in sleep.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Dreaming experience vs. no experience in NREM sleep (low-frequency power).
Figure 2: Dreaming experience vs. no experience in REM sleep (low-frequency power).
Figure 3: Dreaming experience vs. no experience in NREM and REM sleep (high-frequency power).
Figure 4: The content of dream experiences in REM sleep.
Figure 5: Real-time prediction of dream experience.


  1. 1

    Stickgold, R., Malia, A., Fosse, R., Propper, R. & Hobson, J.A. Brain-mind states: I. Longitudinal field study of sleep/wake factors influencing mentation report length. Sleep 24, 171–179 (2001).

    CAS  PubMed  Google Scholar 

  2. 2

    Nir, Y. & Tononi, G. Dreaming and the brain: from phenomenology to neurophysiology. Trends Cogn. Sci. 14, 88–100 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. 3

    Schwartz, S. & Maquet, P. Sleep imaging and the neuro-psychological assessment of dreams. Trends Cogn. Sci. 6, 23–30 (2002).

    PubMed  Google Scholar 

  4. 4

    Aserinsky, E. & Kleitman, N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118, 273–274 (1953).

    CAS  PubMed  Google Scholar 

  5. 5

    Moruzzi, G. & Magoun, H.W. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1, 455–473 (1949).

    CAS  Google Scholar 

  6. 6

    Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001).

    CAS  Google Scholar 

  7. 7

    Maquet, P. Functional neuroimaging of normal human sleep by positron emission tomography. J. Sleep Res. 9, 207–231 (2000).

    CAS  PubMed  Google Scholar 

  8. 8

    Chow, H.M. et al. Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proc. Natl. Acad. Sci. USA 110, 10300–10305 (2013).

    CAS  PubMed  Google Scholar 

  9. 9

    Siclari, F., Larocque, J.J., Postle, B.R. & Tononi, G. Assessing sleep consciousness within subjects using a serial awakening paradigm. Front. Psychol. 4, 542 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Foulkes, W.D. Dream reports from different stages of sleep. J. Abnorm. Soc. Psychol. 65, 14–25 (1962).

    CAS  PubMed  Google Scholar 

  11. 11

    Nir, Y. et al. Regional slow waves and spindles in human sleep. Neuron 70, 153–169 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Pigorini, A. et al. Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep. Neuroimage 112, 105–113 (2015).

    PubMed  Google Scholar 

  13. 13

    Tononi, G. & Massimini, M. Why does consciousness fade in early sleep? Ann. NY Acad. Sci. 1129, 330–334 (2008).

    PubMed  Google Scholar 

  14. 14

    Purdon, P.L. et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc. Natl. Acad. Sci. USA 110, E1142–E1151 (2013).

    CAS  PubMed  Google Scholar 

  15. 15

    Jones, B.E. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol. Sci. 26, 578–586 (2005).

    CAS  PubMed  Google Scholar 

  16. 16

    Steriade, M., Contreras, D., Amzica, F. & Timofeev, I. Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J. Neurosci. 16, 2788–2808 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Le Van Quyen, M. et al. Large-scale microelectrode recordings of high-frequency gamma oscillations in human cortex during sleep. J. Neurosci. 30, 7770–7782 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Nielsen, T.A. in Handbook of Behavioral State Control (eds. Lydic, R. & Baghdoyan, H.A.,) 101–128 (CRC, 1999).

  19. 19

    Nielsen, T.A. A review of mentation in REM and NREM sleep: “covert” REM sleep as a possible reconciliation of two opposing models. Behav. Brain Sci. 23, 851–866, discussion 904–1121 (2000).

    CAS  PubMed  Google Scholar 

  20. 20

    Cavallero, C., Cicogna, P., Natale, V., Occhionero, M. & Zito, A. Slow wave sleep dreaming. Sleep 15, 562–566 (1992).

    CAS  PubMed  Google Scholar 

  21. 21

    Voss, U., Holzmann, R., Tuin, I. & Hobson, J.A. Lucid dreaming: a state of consciousness with features of both waking and non-lucid dreaming. Sleep 32, 1191–1200 (2009).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Dresler, M. et al. Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: a combined EEG/fMRI case study. Sleep 35, 1017–1020 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. 23

    Koch, C., Massimini, M., Boly, M. & Tononi, G. Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321 (2016).

    CAS  PubMed  Google Scholar 

  24. 24

    Balestrini, S. et al. Reply: The dorsal cingulate cortex as a critical gateway in the network supporting conscious awareness. Brain 139, e24 (2016).

    PubMed  Google Scholar 

  25. 25

    Herbet, G. et al. Disrupting posterior cingulate connectivity disconnects consciousness from the external environment. Neuropsychologia 56, 239–244 (2014).

    PubMed  Google Scholar 

  26. 26

    Revonsuo, A. The reinterpretation of dreams: an evolutionary hypothesis of the function of dreaming. Behav. Brain Sci. 23, 877–901, discussion 904–1121 (2000).

    CAS  PubMed  Google Scholar 

  27. 27

    Windt, J.M. Dreaming: a Conceptual Framework for Philosophy of Mind and Empirical Research (MIT Press, 2015).

  28. 28

    Christophel, T.B., Hebart, M.N. & Haynes, J.D. Decoding the contents of visual short-term memory from human visual and parietal cortex. J. Neurosci. 32, 12983–12989 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Postle, B.R. The cognitive neuroscience of visual short-term memory. Curr. Opin. Behav. Sci. 1, 40–46 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. 30

    Funk, C.M., Honjoh, S., Rodriguez, A.V., Cirelli, C. & Tononi, G. Local slow waves in superficial layers of primary cortical areas during REM sleep. Curr. Biol. 26, 396–403 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Schiff, N.D., Nauvel, T. & Victor, J.D. Large-scale brain dynamics in disorders of consciousness. Curr. Opin. Neurobiol. 25, 7–14 (2014).

    CAS  PubMed  Google Scholar 

  32. 32

    Sitt, J.D. et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain 137, 2258–2270 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Gökyigĭt, A. & Calişkan, A. Diffuse spike-wave status of 9-year duration without behavioral change or intellectual decline. Epilepsia 36, 210–213 (1995).

    PubMed  Google Scholar 

  34. 34

    Wikler, A. Pharmacologic dissociation of behavior and EEG “sleep patterns” in dogs; morphine, n-allylnormorphine, and atropine. Proc. Soc. Exp. Biol. Med. 79, 261–265 (1952).

    CAS  PubMed  Google Scholar 

  35. 35

    Horikawa, T., Tamaki, M., Miyawaki, Y. & Kamitani, Y. Neural decoding of visual imagery during sleep. Science 340, 639–642 (2013).

    CAS  PubMed  Google Scholar 

  36. 36

    Malcolm, N. Dreaming and skepticism. Philos. Rev. 65, 14–37 (1956).

    Google Scholar 

  37. 37

    Dennet, D.C. Are dreams experiences? Philos. Rev. 85, 151–171 (1976).

    Google Scholar 

  38. 38

    Aru, J. et al. Local category-specific gamma band responses in the visual cortex do not reflect conscious perception. J. Neurosci. 32, 14909–14914 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Murphy, M. et al. Propofol anesthesia and sleep: a high-density EEG study. Sleep 34, 283–291A (2011).

    PubMed  PubMed Central  Google Scholar 

  40. 40

    Naro, A., Bramanti, P., Leo, A., Russo, M. & Calabrò, R.S. Transcranial alternating current stimulation in patients with chronic disorder of consciousness: a possible way to cut the diagnostic Gordian knot? Brain Topogr. 29, 623–644 (2016).

    PubMed  Google Scholar 

  41. 41

    Voss, U. et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat. Neurosci. 17, 810–812 (2014).

    CAS  PubMed  Google Scholar 

  42. 42

    Christoff, K., Gordon, A.M., Smallwood, J., Smith, R. & Schooler, J.W. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl. Acad. Sci. USA 106, 8719–8724 (2009).

    CAS  PubMed  Google Scholar 

  43. 43

    Perogamvros, L. & Schwartz, S. The roles of the reward system in sleep and dreaming. Neurosci. Biobehav. Rev. 36, 1934–1951 (2012).

    PubMed  Google Scholar 

  44. 44

    Fleming, S.M. & Dolan, R.J. The neural basis of metacognitive ability. Phil. Trans. R. Soc. Lond. B 367, 1338–1349 (2012).

    Google Scholar 

  45. 45

    Hohwy, J. The neural correlates of consciousness: new experimental approaches needed? Conscious. Cogn. 18, 428–438 (2009).

    PubMed  Google Scholar 

  46. 46

    Baars, B.J., Ramsøy, T.Z. & Laureys, S. Brain, conscious experience and the observing self. Trends Neurosci. 26, 671–675 (2003).

    CAS  PubMed  Google Scholar 

  47. 47

    Dehaene, S. et al. Cerebral mechanisms of word masking and unconscious repetition priming. Nat. Neurosci. 4, 752–758 (2001).

    CAS  PubMed  Google Scholar 

  48. 48

    Hebb, D.O. & Penfield, W. Human behavior after extensive bilateral removal from the frontal lobes. Arch. Neurol. Psychiatry 42, 421–438 (1940).

    Google Scholar 

  49. 49

    Frässle, S., Sommer, J., Jansen, A., Naber, M. & Einhäuser, W. Binocular rivalry: frontal activity relates to introspection and action but not to perception. J. Neurosci. 34, 1738–1747 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Kamphuisen, A., Bauer, M. & van Ee, R. No evidence for widespread synchronized networks in binocular rivalry: MEG frequency tagging entrains primarily early visual cortex. J. Vis. 8 (2008).

  51. 51

    Iber, C., Ancoli-Israel, S., Chesson, A. & Quan, S.F. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications (American Academy of Sleep Medicine, 2007).

  52. 52

    Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Google Scholar 

  53. 53

    Jung, T.P. et al. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 163–178 (2000).

    CAS  PubMed  Google Scholar 

  54. 54

    Pascual-Marqui, R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24 (Suppl. D), 5–12 (2002).

    PubMed  Google Scholar 

  55. 55

    Huber, R., Ghilardi, M.F., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 78–81 (2004).

    CAS  PubMed  Google Scholar 

  56. 56

    Huber, R. et al. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat. Neurosci. 9, 1169–1176 (2006).

    CAS  PubMed  Google Scholar 

  57. 57

    Nichols, T.E. & Holmes, A.P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25 (2002).

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Rossion, B., Schiltz, C. & Crommelinck, M. The functionally defined right occipital and fusiform “face areas” discriminate novel from visually familiar faces. Neuroimage 19, 877–883 (2003).

    PubMed  Google Scholar 

  59. 59

    Corbetta, M., Miezin, F.M., Shulman, G.L. & Petersen, S.E. A PET study of visuospatial attention. J. Neurosci. 13, 1202–1226 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Malhotra, P., Coulthard, E.J. & Husain, M. Role of right posterior parietal cortex in maintaining attention to spatial locations over time. Brain 132, 645–660 (2009).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Grossman, E. et al. Brain areas involved in perception of biological motion. J. Cogn. Neurosci. 12, 711–720 (2000).

    CAS  PubMed  Google Scholar 

  62. 62

    Puce, A., Allison, T., Bentin, S., Gore, J.C. & McCarthy, G. Temporal cortex activation in humans viewing eye and mouth movements. J. Neurosci. 18, 2188–2199 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Narain, C. et al. Defining a left-lateralized response specific to intelligible speech using fMRI. Cereb. Cortex 13, 1362–1368 (2003).

    CAS  PubMed  Google Scholar 

  64. 64

    Gross, D.W. & Gotman, J. Correlation of high-frequency oscillations with the sleep-wake cycle and cognitive activity in humans. Neuroscience 94, 1005–1018 (1999).

    CAS  PubMed  Google Scholar 

  65. 65

    Andrillon, T. et al. Sleep spindles in humans: insights from intracranial EEG and unit recordings. J. Neurosci. 31, 17821–17834 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Sirota, A., Csicsvari, J., Buhl, D. & Buzsáki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl. Acad. Sci. USA 100, 2065–2069 (2003).

    CAS  Google Scholar 

  67. 67

    Seghier, M.L. Laterality index in functional MRI: methodological issues. Magn. Reson. Imaging 26, 594–601 (2008).

    PubMed  PubMed Central  Google Scholar 

  68. 68

    Renard, Y. et al. OpenViBE: an open-source software platform to design, test, and use brain-computer interfaces in real and virtual environments. Presence 19, 35–53 (2010).

    Google Scholar 

  69. 69

    Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D. & Leahy, R.M. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716 (2011).

    PubMed  PubMed Central  Google Scholar 

  70. 70

    Chumbley, J., Worsley, K., Flandin, G. & Friston, K. Topological FDR for neuroimaging. Neuroimage 49, 3057–3064 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Keren, A.S., Yuval-Greenberg, S. & Deouell, L.Y. Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression. Neuroimage 49, 2248–2263 (2010).

    PubMed  Google Scholar 

  72. 72

    Muthukumaraswamy, S.D. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front. Hum. Neurosci. 7, 138 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references


The authors thank D. Bachhuber, L. Barbosa, R. Benca, E. Carrera, A. Castelnovo, A. Cayo, C. Cirelli, R. Davidson, C. Funk, M. Gevelinger, J. Harris, A. Mensen, P. Nori, R. Smith, L. Vuillaume, S. Yu, C. Zennig and our undergraduate research assistants for help with data collection, sleep scoring, technical assistance and discussions. This work was supported by NIH/NCCAM P01AT004952 (to G.T.), NIH/NIMH 5P20MH077967 (to G.T.), Tiny Blue Dot Inc. grant MSN196438/AAC1335 (to G.T.), Swiss National Science Foundation Grants 139778 (to F.S.), 145571 (to F.S.) and 155120 (to L.P.), Swiss Foundation for Medical Biological Grants 151743 and 145763 (to F.S.), NIH/NINDS F32NS089348 (to B.B.), UW Medical Scientist Training Program Grant T32 GM008692 (to J.J.L.), NIH Grants MH064498 and MH095984 (to B.R.P.).

Author information




F.S., L.P., B.B., J.J.L., M.B., B.R., B.R.P. and G.T. designed the experiments; F.S., L.P., B.B. and J.J.L. conducted the experiments; F.S., L.P., B.B. and G.B. analyzed the data; and F.S., L.P., B.B. and G.T. wrote the paper.

Corresponding author

Correspondence to Giulio Tononi.

Ethics declarations

Competing interests

G.T. and B.R. are involved in a research study in humans supported by Philips Respironics. This study is not related to the work presented in the current manuscript.

Integrated supplementary information

Supplementary Figure 1 Dreaming experience vs. no experience (experiment 2)

Cortical distribution of t-values for the contrast between DEs and NEs at the source level for low-frequency power (1-4 Hz) in NREM sleep (20s before awakening). p<0.05 after correction for multiple comparisons (two-tailed, paired t-tests, 7 subjects, t(6) ≥ 2.45). B. Same as A for high- frequency power (25-50 Hz) in NREM sleep (two-tailed, paired t-tests, 7 subjects, t(6) ≥ 2.45).

Supplementary Figure 2 Conjunction between DE–NE and DEWR–NE contrasts (experiment 1)

Conjunction maps: differences and overlaps between the two contrasts (DE/NE and DEWR/NE) for low-frequency power in NREM sleep. DE/NE contrast: 32 subjects, DEWR/NE contrast 20 subjects.

Supplementary Figure 3 Dreaming experience vs. no experience (experiment 1)

Cortical distribution of t-values for the contrast between DEs and NEs at the source level for high-frequency power (25-50 Hz) in NREM sleep (20s before awakening) for experiment 1. p<0.05 after correction for multiple comparisons (two-tailed, paired t-tests, 32 subjects, t(31) > 2.04).

Supplementary Figure 4 Dreaming experience without recall vs. no experience (experiment 1)

A. Cortical distribution of t-values for the contrast between DEWRs and NEs at the source level for high-frequency power (20-50 Hz) in NREM sleep (20s before awakening). p<0.05 after correction for multiple comparisons (two-tailed, paired t-tests, 20 subjects, t(19) > 2.09). B. Cortical distribution of unthresholded t-values for the same comparison.

Supplementary Figure 5 Absolute power values for DE and NE (experiments 1 and 2)

Power spectral density for DE and NE, averaged over the posterior hot zone, (determined by the overlap between the DE/NE contrast in REM and NREM sleep, as shown in Figure 2B), for high- and low-frequency bands in NREM (n=32) and REM sleep (n=10). Two-tailed paired t-tests (NREM LF: t(31)= -2.98; NREM HF: t(31)= 3.46; REM LF: t(9)= -3.59; REM HF: t(9)= 3.10). Whiskers correspond to 3 standard deviations from the mean, crosses indicate values above this limit.

Supplementary Figure 6 Dreaming experience vs. no experience (experiment 3)

High-frequency power (20-50 Hz) for dream experiences (DE) and no experiences (NE) in NREM, averaged over the ROI used for prediction in experiment 3.7 subjects, paired t-test, t(6)=4.41, p=0.005, two-tailed). The asterisk indicates a significant difference (p=0.005) between DE and NE trials.

Supplementary Figure 7 Dreaming experience vs. no experience (experiment 3)

Cortical distribution of t-values for the contrast between DEs and NEs for the HF/LF power ratio in NREM sleep (20s before awakening), p<0.05 SnPM corrected (two-tailed, paired t-tests, 7 subjects). All vertices displayed a significant effect for DE>NE.

Supplementary Figure 8 Dreaming experience vs. no experience (experiments 1 and 2)

Cortical distribution of unthresholded t-values for the contrast between DEs and NEs for delta power in NREM sleep (20s before awakening) for experiments 1 (32 subjects) and 2 (7 subjects). Paired two-tailed t-tests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–5 (PDF 1866 kb)

Supplementary Methods Checklist. (PDF 223 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siclari, F., Baird, B., Perogamvros, L. et al. The neural correlates of dreaming. Nat Neurosci 20, 872–878 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing