Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Motivational neural circuits underlying reinforcement learning

Subjects

Abstract

Reinforcement learning (RL) is the behavioral process of learning the values of actions and objects. Most models of RL assume that the dopaminergic prediction error signal drives plasticity in frontal–striatal circuits. The striatum then encodes value representations that drive decision processes. However, the amygdala has also been shown to play an important role in forming Pavlovian stimulus–outcome associations. These Pavlovian associations can drive motivated behavior via the amygdala projections to the ventral striatum or the ventral tegmental area. The amygdala may, therefore, play a central role in RL. Here we compare the contributions of the amygdala and the striatum to RL and show that both the amygdala and striatum learn and represent expected values in RL tasks. Furthermore, value representations in the striatum may be inherited, to some extent, from the amygdala. The striatum may, therefore, play less of a primary role in learning stimulus–outcome associations in RL than previously suggested.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of neural encoding of value between the lateral prefrontal cortex (lPFC) and the DS.
Figure 2: Choice probability during learning.
Figure 3: Learning in amygdala-lesioned, VS-lesioned and control animals.
Figure 4: Schematic diagram of the interactions between the amygdala and striatum as well as the roles of each structure in RL.

Kim Caesar/Springer Nature

Similar content being viewed by others

References

  1. Johansen, J.P. et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc. Natl. Acad. Sci. USA 107, 12692–12697 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belova, M.A., Paton, J.J. & Salzman, C.D. Moment-to-moment tracking of state value in the amygdala. J. Neurosci. 28, 10023–10030 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cardinal, R.N., Parkinson, J.A., Hall, J. & Everitt, B.J. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–352 (2002).

    Article  PubMed  Google Scholar 

  5. Hampton, A.N., Adolphs, R., Tyszka, M.J. & O'Doherty, J.P. Contributions of the amygdala to reward expectancy and choice signals in human prefrontal cortex. Neuron 55, 545–555 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Costa, V.D., Dal Monte, O., Lucas, D.R., Murray, E.A. & Averbeck, B.B. Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning. Neuron 92, 505–517 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosenkranz, J.A. & Grace, A.A. Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature 417, 282–287 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Johansen, J.P. et al. Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation. Proc. Natl. Acad. Sci. USA 111, E5584–E5592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stuber, G.D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ambroggi, F., Ishikawa, A., Fields, H.L. & Nicola, S.M. Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59, 648–661 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Corbit, L.H. & Balleine, B.W. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of Pavlovian-instrumental transfer. J. Neurosci. 25, 962–970 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seo, M., Lee, E. & Averbeck, B.B. Action selection and action value in frontal-striatal circuits. Neuron 74, 947–960 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, E., Seo, M., Dal Monte, O. & Averbeck, B.B. Injection of a dopamine type 2 receptor antagonist into the dorsal striatum disrupts choices driven by previous outcomes, but not perceptual inference. J. Neurosci. 35, 6298–6306 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific reward values in the striatum. Science 310, 1337–1340 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    CAS  PubMed  Google Scholar 

  16. Davis, M. The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353–375 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Baxter, M.G. & Murray, E.A. The amygdala and reward. Nat. Rev. Neurosci. 3, 563–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Seymour, B. & Dolan, R. Emotion, decision making, and the amygdala. Neuron 58, 662–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Wassum, K.M. & Izquierdo, A. The basolateral amygdala in reward learning and addiction. Neurosci. Biobehav. Rev. 57, 271–283 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Montague, P.R., Dayan, P. & Sejnowski, T.J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Houk, J.C., Adamas, J.L. & Barto, A.G. A model of how the basal ganglia generates and uses neural signals that predict reinforcement. in Models of Information Processing in the Basal Ganglia (eds. Houk, J.C., Davis, J.L. & Beiser, D.G.) 249–274 (MIT Press, 1995).

  23. O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Doya, K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 10, 732–739 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Suri, R.E. & Schultz, W. Learning of sequential movements by neural network model with dopamine-like reinforcement signal. Exp. Brain Res. 121, 350–354 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Nakahara, H., Doya, K. & Hikosaka, O. Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences - a computational approach. J. Cogn. Neurosci. 13, 626–647 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Frank, M.J. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J. Cogn. Neurosci. 17, 51–72 (2005).

    Article  PubMed  Google Scholar 

  28. Haber, S.N., Fudge, J.L. & McFarland, N.R. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown, R.M., Crane, A.M. & Goldman, P.S. Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res. 168, 133–150 (1979).

    Article  CAS  PubMed  Google Scholar 

  30. Garris, P.A. & Wightman, R.M. Distinct pharmacological regulation of evoked dopamine efflux in the amygdala and striatum of the rat in vivo. Synapse 20, 269–279 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Schultz, W. Getting formal with dopamine and reward. Neuron 36, 241–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Frank, M.J., Seeberger, L.C. & O'reilly, R.C. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306, 1940–1943 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Pessiglione, M., Seymour, B., Flandin, G., Dolan, R.J. & Frith, C.D. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442, 1042–1045 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rescorla, R.A. & Wagner, A.R. A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. in Classical Conditioning II: Current Research and Theory (eds. Black, A.H. & Prokasy, W.F.) 64–99 (Appleton-Century-Crofts, 1972).

  35. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Danjo, T., Yoshimi, K., Funabiki, K., Yawata, S. & Nakanishi, S. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 111, 6455–6460 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kravitz, A.V., Tye, L.D. & Kreitzer, A.C. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816–818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gerfen, C.R. & Surmeier, D.J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gore, F. et al. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 162, 134–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Namburi, P. et al. A circuit mechanism for differentiating positive and negative associations. Nature 520, 675–678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lau, B. & Glimcher, P.W. Value representations in the primate striatum during matching behavior. Neuron 58, 451–463 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Setlow, B., Schoenbaum, G. & Gallagher, M. Neural encoding in ventral striatum during olfactory discrimination learning. Neuron 38, 625–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Roitman, M.F., Wheeler, R.A. & Carelli, R.M. Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron 45, 587–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Roitman, M.F., Wheeler, R.A., Tiesinga, P.H., Roitman, J.D. & Carelli, R.M. Hedonic and nucleus accumbens neural responses to a natural reward are regulated by aversive conditioning. Learn. Mem. 17, 539–546 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cerri, D.H., Saddoris, M.P. & Carelli, R.M. Nucleus accumbens core neurons encode value-independent associations necessary for sensory preconditioning. Behav. Neurosci. 128, 567–578 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ambroggi, F., Ghazizadeh, A., Nicola, S.M. & Fields, H.L. Roles of nucleus accumbens core and shell in incentive-cue responding and behavioral inhibition. J. Neurosci. 31, 6820–6830 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eisenegger, C. et al. Role of dopamine D2 receptors in human reinforcement learning. Neuropsychopharmacology 39, 2366–2375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Costa, V.D., Tran, V.L., Turchi, J. & Averbeck, B.B. Reversal learning and dopamine: a bayesian perspective. J. Neurosci. 35, 2407–2416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cardinal, R.N. et al. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav. Neurosci. 116, 553–567 (2002).

    Article  PubMed  Google Scholar 

  50. Parkinson, J.A., Robbins, T.W. & Everitt, B.J. Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. Eur. J. Neurosci. 12, 405–413 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Gallagher, M., Graham, P.W. & Holland, P.C. The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. J. Neurosci. 10, 1906–1911 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cador, M., Robbins, T.W. & Everitt, B.J. Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Neuroscience 30, 77–86 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Burns, L.H., Robbins, T.W. & Everitt, B.J. Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of D-amphetamine. Behav. Brain Res. 55, 167–183 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Belin, D., Jonkman, S., Dickinson, A., Robbins, T.W. & Everitt, B.J. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav. Brain Res. 199, 89–102 (2009).

    Article  PubMed  Google Scholar 

  55. Parkinson, J.A., Olmstead, M.C., Burns, L.H., Robbins, T.W. & Everitt, B.J. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J. Neurosci. 19, 2401–2411 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hofer, P.A. Urbach-Wiethe disease (lipoglycoproteinosis; lipoid proteinosis; hyalinosis cutis et mucosae). A review. Acta Derm. Venereol. Suppl. (Stockh.) 53, 1–52 (1973).

    CAS  Google Scholar 

  57. Fuster, J.M. & Uyeda, A.A. Reactivity of limbic neurons of the monkey to appetitive and aversive signals. Electroencephalogr. Clin. Neurophysiol. 30, 281–293 (1971).

    Article  CAS  PubMed  Google Scholar 

  58. Sanghera, M.K., Rolls, E.T. & Roper-Hall, A. Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp. Neurol. 63, 610–626 (1979).

    Article  CAS  PubMed  Google Scholar 

  59. Muramoto, K., Ono, T., Nishijo, H. & Fukuda, M. Rat amygdaloid neuron responses during auditory discrimination. Neuroscience 52, 621–636 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Nishijo, H., Ono, T. & Nishino, H. Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J. Neurosci. 8, 3570–3583 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Paton, J.J., Belova, M.A., Morrison, S.E. & Salzman, C.D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Klavir, O., Genud-Gabai, R. & Paz, R. Functional connectivity between amygdala and cingulate cortex for adaptive aversive learning. Neuron 80, 1290–1300 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Salzman, C.D. & Fusi, S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu. Rev. Neurosci. 33, 173–202 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jenison, R.L., Rangel, A., Oya, H., Kawasaki, H. & Howard, M.A. Value encoding in single neurons in the human amygdala during decision making. J. Neurosci. 31, 331–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saez, A., Rigotti, M., Ostojic, S., Fusi, S. & Salzman, C.D. Abstract context representations in primate amygdala and prefrontal cortex. Neuron 87, 869–881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Belova, M.A., Paton, J.J., Morrison, S.E. & Salzman, C.D. Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron 55, 970–984 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shabel, S.J. & Janak, P.H. Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal. Proc. Natl. Acad. Sci. USA 106, 15031–15036 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tye, K.M. & Janak, P.H. Amygdala neurons differentially encode motivation and reinforcement. J. Neurosci. 27, 3937–3945 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tye, K.M., Stuber, G.D., de Ridder, B., Bonci, A. & Janak, P.H. Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning. Nature 453, 1253–1257 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Beyeler, A. et al. Divergent routing of positive and negative information from the amygdala during memory retrieval. Neuron 90, 348–361 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tian, J. et al. Distributed and mixed information in monosynaptic inputs to dopamine neurons. Neuron 91, 1374–1389 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Johansen, J.P., Tarpley, J.W., LeDoux, J.E. & Blair, H.T. Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray. Nat. Neurosci. 13, 979–986 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Britt, J.P. et al. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76, 790–803 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Floresco, S.B., Yang, C.R., Phillips, A.G. & Blaha, C.D. Basolateral amygdala stimulation evokes glutamate receptor-dependent dopamine efflux in the nucleus accumbens of the anaesthetized rat. Eur. J. Neurosci. 10, 1241–1251 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Jones, J.L. et al. Basolateral amygdala modulates terminal dopamine release in the nucleus accumbens and conditioned responding. Biol. Psychiatry 67, 737–744 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Takahashi, Y.K., Langdon, A.J., Niv, Y. & Schoenbaum, G. Temporal specificity of reward prediction errors signaled by putative dopamine neurons in rat VTA depends on ventral striatum. Neuron 91, 182–193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Parker, N.F. et al. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. Nat. Neurosci. 19, 845–854 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Weiskrantz, L. Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J. Comp. Physiol. Psychol. 49, 381–391 (1956).

    Article  CAS  PubMed  Google Scholar 

  79. Sutton, R.S. & Barto, A.G. Reinforcement Learning: an Introduction (MIT Press, 1998).

  80. Pearce, J.M. & Hall, G. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87, 532–552 (1980).

    Article  CAS  PubMed  Google Scholar 

  81. Schultz, W. Neuronal reward and decision signals: from theories to data. Physiol. Rev. 95, 853–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dayan, P. & Daw, N.D. Decision theory, reinforcement learning, and the brain. Cogn. Affect. Behav. Neurosci. 8, 429–453 (2008).

    Article  PubMed  Google Scholar 

  83. Sutton, R.S. Learning to predict by the methods of temporal differences. Mach. Learn. 3, 9–44 (1988).

    Google Scholar 

  84. Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4, e10032 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Day, J.J., Roitman, M.F., Wightman, R.M. & Carelli, R.M. Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat. Neurosci. 10, 1020–1028 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Hart, A.S., Rutledge, R.B., Glimcher, P.W. & Phillips, P.E. Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term. J. Neurosci. 34, 698–704 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ravel, S. & Richmond, B.J. Dopamine neuronal responses in monkeys performing visually cued reward schedules. Eur. J. Neurosci. 24, 277–290 (2006).

    Article  PubMed  Google Scholar 

  88. Hamid, A.A. et al. Mesolimbic dopamine signals the value of work. Nat. Neurosci. 19, 117–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Syed, E.C. et al. Action initiation shapes mesolimbic dopamine encoding of future rewards. Nat. Neurosci. 19, 34–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Cohen, J.Y., Haesler, S., Vong, L., Lowell, B.B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Howe, M.W., Tierney, P.L., Sandberg, S.G., Phillips, P.E. & Graybiel, A.M. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500, 575–579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guitart-Masip, M. et al. Action controls dopaminergic enhancement of reward representations. Proc. Natl. Acad. Sci. USA 109, 7511–7516 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lloyd, K. & Dayan, P. Tamping ramping: algorithmic, implementational, and computational explanations of phasic dopamine signals in the accumbens. PLoS Comput. Biol. 11, e1004622 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Joshua, M. et al. Synchronization of midbrain dopaminergic neurons is enhanced by rewarding events. Neuron 62, 695–704 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Bromberg-Martin, E.S., Matsumoto, M. & Hikosaka, O. Distinct tonic and phasic anticipatory activity in lateral habenula and dopamine neurons. Neuron 67, 144–155 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mirenowicz, J. & Schultz, W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379, 449–451 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Brischoux, F., Chakraborty, S., Brierley, D.I. & Ungless, M.A. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc. Natl. Acad. Sci. USA 106, 4894–4899 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lerner, T.N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Badrinarayan, A. et al. Aversive stimuli differentially modulate real-time dopamine transmission dynamics within the nucleus accumbens core and shell. J. Neurosci. 32, 15779–15790 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno B Averbeck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averbeck, B., Costa, V. Motivational neural circuits underlying reinforcement learning. Nat Neurosci 20, 505–512 (2017). https://doi.org/10.1038/nn.4506

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4506

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing