Studying neuroanatomy using MRI

Abstract

The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging and disease. Developments in MRI acquisition, image processing and data modeling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and for inferring microstructural properties; we also describe key artifacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, although methods need to improve and caution is required in interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Coronal slices of multimodal images of brain structure acquired in members of a birth cohort when they reached 20 years of age.
Figure 2: Voxel-based morphometry (VBM).
Figure 3: Surface-based analyses.
Figure 4
Figure 5: The dura and the cortex.
Figure 6: Overview of diffusion modeling advances.

References

  1. 1

    Zilles, K. & Amunts, K. Centenary of Brodmann’s map--conception and fate. Nat. Rev. Neurosci. 11, 139–145 (2010).

    Article  CAS  Google Scholar 

  2. 2

    Gowland, P.A. & Stevenson, V.L. T1: the longitudinal relaxation time. in Quantitative MRI of the Brain (ed. Tofts, P.S.) 111–141 (Wiley, 2003).

  3. 3

    Bottomley, P.A., Hardy, C.J., Argersinger, R.E. & Allen-Moore, G. A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic? Med. Phys. 14, 1–37 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Boulby, P.A. & Rugg-Gunn, F. T2: the transverse relaxation time. in Quantitative MRI of the Brain (ed. Tofts, P.S.) 143–202 (Wiley, 2003).

  5. 5

    Miller, K.L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536. (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Glasser, M.F. et al. The Human Connectome Project’s neuroimaging approach. Nat. Neurosci. 19, 1175–1187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Chakravarty, M.M. et al. Performing label-fusion-based segmentation using multiple automatically generated templates. Hum. Brain Mapp. 34, 2635–2654 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Ashburner, J. & Friston, K.J. Voxel-based morphometry--the methods. Neuroimage 11, 805–821 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Cao, J. & Worsley, K.J. The detection of local shape changes via the geometry of Hotelling’s T^2 fields. Ann. Stat. 27, 925–942 (1999).

    Article  Google Scholar 

  10. 10

    Chung, M.K. et al. A unified statistical approach to deformation-based morphometry. Neuroimage 14, 595–606 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Good, C.D. et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14, 21–36 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Dale, A.M., Fischl, B. & Sereno, M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Fischl, B., Sereno, M.I. & Dale, A.M. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Kim, J.S. et al. Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27, 210–221 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Ducharme, S. et al. Trajectories of cortical thickness maturation in normal brain development--The importance of quality control procedures. Neuroimage 125, 267–279 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Amlien, I.K. et al. Organizing principles of human cortical development--thickness and area from 4 to 30 years: insights from comparative primate neuroanatomy. Cereb. Cortex 26, 257–267 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Raznahan, A. et al. Globally divergent but locally convergent X- and Y-chromosome influences on cortical development. Cereb. Cortex 26, 70–79 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Chen, C.-H. et al. Genetic topography of brain morphology. Proc. Natl. Acad. Sci. USA 110, 17089–17094 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Raznahan, A., Greenstein, D., Lee, N.R., Clasen, L.S. & Giedd, J.N. Prenatal growth in humans and postnatal brain maturation into late adolescence. Proc. Natl. Acad. Sci. USA 109, 11366–11371 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2016.60 (2016).

  21. 21

    Smith, E. et al. Cortical thickness change in autism during early childhood. Hum. Brain Mapp. 37, 2616–2629 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Lerch, J.P. & Evans, A.C. Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24, 163–173 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Jbabdi, S., Sotiropoulos, S.N., Haber, S.N., Van Essen, D.C. & Behrens, T.E. Measuring macroscopic brain connections in vivo. Nat. Neurosci. 18, 1546–1555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Tardif, C.L., Collins, D.L. & Pike, G.B. Sensitivity of voxel-based morphometry analysis to choice of imaging protocol at 3 T. Neuroimage 44, 827–838 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Tardif, C.L., Collins, D.L. & Pike, G.B. Regional impact of field strength on voxel-based morphometry results. Hum. Brain Mapp. 31, 943–957 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Lüsebrink, F., Wollrab, A. & Speck, O. Cortical thickness determination of the human brain using high resolution 3T and 7T MRI data. Neuroimage 70, 122–131 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Scholtens, L.H., de Reus, M.A. & van den Heuvel, M.P. Linking contemporary high resolution magnetic resonance imaging to the von Economo legacy: A study on the comparison of MRI cortical thickness and histological measurements of cortical structure. Hum. Brain Mapp. 36, 3038–3046 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Basser, P.J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Pierpaoli, C. & Basser, P.J. Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36, 893–906 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Simon, T.J. et al. Volumetric, connective, and morphologic changes in the brains of children with chromosome 22q11.2 deletion syndrome: an integrative study. Neuroimage 25, 169–180 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Voineskos, A.N. et al. Quantitative examination of a novel clustering method using magnetic resonance diffusion tensor tractography. Neuroimage 45, 370–376 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Smith, S.M. et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Yushkevich, P.A., Zhang, H., Simon, T.J. & Gee, J.C. Structure-specific statistical mapping of white matter tracts. Neuroimage 41, 448–461 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Jensen, J.H. & Helpern, J.A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 23, 698–710 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Fieremans, E., Jensen, J.H. & Helpern, J.A. White matter characterization with diffusional kurtosis imaging. Neuroimage 58, 177–188 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    McGowan, J.C. The physical basis of magnetization transfer imaging. Neurology 53 (Suppl. 3), S3–S7 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Kucharczyk, W., Macdonald, P.M., Stanisz, G.J. & Henkelman, R.M. Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology 192, 521–529 (1994).

    Article  CAS  Google Scholar 

  38. 38

    Laule, C. et al. Magnetic resonance imaging of myelin. Neurotherapeutics 4, 460–484 (2007).

    Article  CAS  Google Scholar 

  39. 39

    Pike, G.B. Pulsed magnetization transfer contrast in gradient echo imaging: a two-pool analytic description of signal response. Magn. Reson. Med. 36, 95–103 (1996).

    Article  CAS  Google Scholar 

  40. 40

    Ward, K.M., Aletras, A.H. & Balaban, R.S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J. Magn. Reson. 143, 79–87 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Tee, Y.K. et al. Comparing different analysis methods for quantifying the MRI amide proton transfer (APT) effect in hyperacute stroke patients. NMR Biomed. 27, 1019–1029 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Walker-Samuel, S. et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 19, 1067–1072 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Tardif, C.L. et al. Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity. Neuroimage 131, 55–72 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Mugler, J.P., III & Brookeman, J.R. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn. Reson. Med. 15, 152–157 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Deoni, S.C.L., Peters, T.M. & Rutt, B.K. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn. Reson. Med. 53, 237–241 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Fram, E.K. et al. Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn. Reson. Imaging 5, 201–208 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Preibisch, C. & Deichmann, R. T1 mapping using spoiled FLASH-EPI hybrid sequences and varying flip angles. Magn. Reson. Med. 62, 240–246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Stikov, N. et al. On the accuracy of T1 mapping: searching for common ground. Magn. Reson. Med. 73, 514–522 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Shmueli, K. et al. Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn. Reson. Med. 62, 1510–1522 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Mechelli, A., Friston, K.J., Frackowiak, R.S. & Price, C.J. Structural covariance in the human cortex. J. Neurosci. 25, 8303–8310 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Lerch, J.P. et al. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage 31, 993–1003 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Alexander-Bloch, A., Giedd, J.N. & Bullmore, E. Imaging structural co-variance between human brain regions. Nat. Rev. Neurosci. 14, 322–336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Evans, A.C. Networks of anatomical covariance. Neuroimage 80, 489–504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Reid, A.T. et al. A seed-based cross-modal comparison of brain connectivity measures. Brain Struct. Funct. (2016).

  55. 55

    Maguire, E.A. et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. USA 97, 4398–4403 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Draganski, B. et al. Neuroplasticity: changes in grey matter induced by training. Nature 427, 311–312 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Driemeyer, J., Boyke, J., Gaser, C., Büchel, C. & May, A. Changes in gray matter induced by learning--revisited. PLoS One 3, e2669 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Scholz, J., Klein, M.C., Behrens, T.E.J. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Sagi, Y. et al. Learning in the fast lane: new insights into neuroplasticity. Neuron 73, 1195–1203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Taubert, M. et al. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J. Neurosci. 30, 11670–11677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Hyde, K.L. et al. Musical training shapes structural brain development. J. Neurosci. 29, 3019–3025 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Bengtsson, S.L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8, 1148–1150 (2005).

    Article  CAS  Google Scholar 

  63. 63

    Thomas, C. & Baker, C.I. Teaching an adult brain new tricks: a critical review of evidence for training-dependent structural plasticity in humans. Neuroimage 73, 225–236 (2013).

    Article  Google Scholar 

  64. 64

    Thomas, A.G. et al. Functional but not structural changes associated with learning: an exploration of longitudinal voxel-based morphometry (VBM). Neuroimage 48, 117–125 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Lerch, J.P. et al. Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. Neuroimage 54, 2086–2095 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66

    Blumenfeld-Katzir, T., Pasternak, O., Dagan, M. & Assaf, Y. Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS One 6, e20678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Scholz, J., Allemang-Grand, R., Dazai, J. & Lerch, J.P. Environmental enrichment is associated with rapid volumetric brain changes in adult mice. Neuroimage 109, 190–198 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    Sampaio-Baptista, C. et al. Motor skill learning induces changes in white matter microstructure and myelination. J. Neurosci. 33, 19499–19503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Golub, Y. et al. Reduced hippocampus volume in the mouse model of Posttraumatic Stress Disorder. J. Psychiatric Res. 45, 650–659 (2011).

    Article  Google Scholar 

  70. 70

    Keifer, O.P. Jr. et al. Voxel-based morphometry predicts shifts in dendritic spine density and morphology with auditory fear conditioning. Nat Commun 6, 7582 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71

    Biedermann, S. et al. In vivo voxel based morphometry: detection of increased hippocampal volume and decreased glutamate levels in exercising mice. Neuroimage 61, 1206–1212 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72

    Fuss, J. et al. Exercise boosts hippocampal volume by preventing early age-related gray matter loss. Hippocampus 24, 131–134 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Jespersen, S.N. et al. Neurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopy. Neuroimage 49, 205–216 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Sepehrband, F. et al. Brain tissue compartment density estimated using diffusion-weighted MRI yields tissue parameters consistent with histology. Hum. Brain Mapp. 36, 3687–3702 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    Stikov, N. et al. In vivo histology of the myelin g-ratio with magnetic resonance imaging. Neuroimage 118, 397–405 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Jones, D.K., Knösche, T.R. & Turner, R. White matter integrity, fiber count, and other fallacies: the do’s and don'ts of diffusion MRI. Neuroimage 73, 239–254 (2013).

    Article  Google Scholar 

  77. 77

    Streitbürger, D.-P. et al. Investigating structural brain changes of dehydration using voxel-based morphometry. PLoS One 7, e44195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Trefler, A. et al. Impact of time-of-day on brain morphometric measures derived from T1-weighted magnetic resonance imaging. Neuroimage 133, 41–52 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79

    Satterthwaite, T.D. et al. Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 60, 623–632 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Reuter, M. et al. Head motion during MRI acquisition reduces gray matter volume and thickness estimates. Neuroimage 107, 107–115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Alexander-Bloch, A. et al. Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI. Hum. Brain Mapp. 37, 2385–2397 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82

    Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N. & Fischl, B. Spurious group differences due to head motion in a diffusion MRI study. Neuroimage 88, 79–90 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Pardoe, H.R., Kucharsky Hiess, R. & Kuzniecky, R. Motion and morphometry in clinical and nonclinical populations. Neuroimage 135, 177–185 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. 84

    Andersson, J.L.R. & Sotiropoulos, S.N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Chang, L.-C., Walker, L. & Pierpaoli, C. Informed RESTORE: A method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts. Magn. Reson. Med. 68, 1654–1663 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86

    Andersson, J.L.R., Graham, M.S., Zsoldos, E. & Sotiropoulos, S.N. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage 141, 556–572 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87

    Thesen, S., Heid, O., Mueller, E. & Schad, L.R. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn. Reson. Med. 44, 457–465 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    van der Kouwe, A., Fetics, B., Polenur, D., Roth, A. & Nevo, E. Real-time prospective rigid-body motion correction with the EndoScout gradient-based tracking system. in Proc. 17th Scientific Meeting ISMRM 17, 4623, (2009).

    Google Scholar 

  89. 89

    Ooi, M.B. et al. Combined prospective and retrospective correction to reduce motion-induced image misalignment and geometric distortions in EPI. Magn. Reson. Med. 69, 803–811 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90

    van Niekerk, A.M.J. et al. O51. A vector based approach for fast real time orientation measurement in magnetic resonance imaging (MRI). Phys. Med. 32, 158 (2016).

    Article  Google Scholar 

  91. 91

    Olesen, O.V., Paulsen, R.R., Højgaard, L., Roed, B. & Larsen, R. Motion tracking for medical imaging: a nonvisible structured light tracking approach. IEEE Trans. Med. Imaging 31, 79–87 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    van der Kouwe, A.J.W., Benner, T. & Dale, A.M. Real-time rigid body motion correction and shimming using cloverleaf navigators. Magn. Reson. Med. 56, 1019–1032 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93

    Gallichan, D., Marques, J.P. & Gruetter, R. Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T. Magn. Reson. Med. 75, 1030–1039 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Tisdall, M.D. et al. Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion. Neuroimage 127, 11–22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95

    Glasser, M.F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    Ugˇurbil, K. et al. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage 80, 80–104 (2013).

    Article  CAS  Google Scholar 

  97. 97

    Deoni, S.C.L. Correction of main and transmit magnetic field (B0 and B1) inhomogeneity effects in multicomponent-driven equilibrium single-pulse observation of T1 and T2. Magn. Reson. Med. 65, 1021–1035 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98

    Umesh Rudrapatna, S., Juchem, C., Nixon, T.W. & de Graaf, R.A. Dynamic multi-coil tailored excitation for transmit B1 correction at 7 Tesla. Magn. Reson. Med. 76, 83–93 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Watanabe, H., Takaya, N. & Mitsumori, F. Non-uniformity correction of human brain imaging at high field by RF field mapping of B1+ and B1−. J. Magn. Reson. 212, 426–430 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    van der Kouwe, A.J.W., Benner, T., Salat, D.H. & Fischl, B. Brain morphometry with multiecho MPRAGE. Neuroimage 40, 559–569 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  101. 101

    Pruessner, J.C. et al. Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: considering the variability of the collateral sulcus. Cereb. Cortex 12, 1342–1353 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  102. 102

    Bookstein, F.L. “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 14, 1454–1462 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Ashburner, J. & Friston, K.J. Why voxel-based morphometry should be used. Neuroimage 14, 1238–1243 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Fischl, B. et al. Cortical folding patterns and predicting cytoarchitecture. Cereb. Cortex 18, 1973–1980 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  105. 105

    Mangin, J.-F. et al. A framework to study the cortical folding patterns. Neuroimage 23 (Suppl. 1), S129–S138 (2004).

    Article  Google Scholar 

  106. 106

    Eichner, C. et al. Slice accelerated diffusion-weighted imaging at ultra-high field strength. Magn. Reson. Med. 71, 1518–1525 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. 107

    Vu, A.T. et al. High resolution whole brain diffusion imaging at 7T for the Human Connectome Project. Neuroimage 122, 318–331 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Schäfer, A. et al. Direct visualization of the subthalamic nucleus and its iron distribution using high-resolution susceptibility mapping. Hum. Brain Mapp. 33, 2831–2842 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. 109

    Setsompop, K. et al. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn. Reson. Med. 67, 1210–1224 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  110. 110

    Moeller, S. et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63, 1144–1153 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111

    Xu, J. et al. Evaluation of slice accelerations using multiband echo planar imaging at 3 T. Neuroimage 83, 991–1001 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  112. 112

    Hughes, E.J. et al. A dedicated neonatal brain imaging system. Magn. Reson. Med. http://dx.doi.org/10.1002/mrm.26462 (2016).

  113. 113

    Setsompop, K. et al. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. Neuroimage 80, 220–233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Sotiropoulos, S.N. et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage 80, 125–143 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. 115

    Fan, Q. et al. MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI. Neuroimage 124 (Pt. B), 1108–1114 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. 116

    McNab, J.A. et al. The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. Neuroimage 80, 234–245 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. 117

    Ferizi, U. et al. White matter compartment models for in vivo diffusion MRI at 300mT/m. Neuroimage 118, 468–483 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. 118

    Douaud, G. et al. In vivo evidence for the selective subcortical degeneration in Huntington’s disease. Neuroimage 46, 958–966 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  119. 119

    Panagiotaki, E. et al. Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 59, 2241–2254 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. 120

    Jelescu, I.O. et al. In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy. Neuroimage 132, 104–114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Kodiweera, C., Alexander, A.L., Harezlak, J., McAllister, T.W. & Wu, Y.-C. Age effects and sex differences in human brain white matter of young to middle-aged adults: A DTI, NODDI, and q-space study. Neuroimage 128, 180–192 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. 122

    Colgan, N. et al. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer’s disease. Neuroimage 125, 739–744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Callaghan, P.T., Coy, A., MacGowan, D., Packer, K.J. & Zelaya, F.O. Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature 351, 467–469 (1991).

    Article  CAS  Google Scholar 

  124. 124

    Shemesh, N., Ozarslan, E., Komlosh, M.E., Basser, P.J. & Cohen, Y. From single-pulsed field gradient to double-pulsed field gradient MR: gleaning new microstructural information and developing new forms of contrast in MRI. NMR Biomed. 23, 757–780 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. 125

    Kaden, E., Kruggel, F. & Alexander, D.C. Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn. Reson. Med. 75, 1752–1763 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Ozarslan, E. Compartment shape anisotropy (CSA) revealed by double pulsed field gradient MR. J. Magn. Reson. 199, 56–67 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Drobnjak, I., Zhang, H., Ianus¸, A., Kaden, E. & Alexander, D.C. PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study. Magn. Reson. Med. 75, 688–700 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  128. 128

    Nilsson, M., van Westen, D., Ståhlberg, F., Sundgren, P.C. & Lätt, J. The role of tissue microstructure and water exchange in biophysical modeling of diffusion in white matter. MAGMA 26, 345–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Westin, C.-F. et al. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. Neuroimage 135, 345–362 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  130. 130

    Reisert, M., Kellner, E., Dhital, B., Hennig, J. & Kiselev, V.G. Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach. Neuroimage S1053-8119(16)30535-3 http://dx.doi.org/10.1016/j.neuroimage.2016.09.058 (2016).

  131. 131

    Lampinen, B. et al. Optimal experimental design for filter exchange imaging: Apparent exchange rate measurements in the healthy brain and in intracranial tumors. Magn. Reson. Med. http://dx.doi.org/10.1002/mrm.26195 (2016).

  132. 132

    Devlin, J.T. & Poldrack, R.A. In praise of tedious anatomy. Neuroimage 37, 1033–1041, discussion 1050–1058 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  133. 133

    Margulies, D.S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. USA 113, 12574–12579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Collin, G., Sporns, O., Mandl, R.C.W. & van den Heuvel, M.P. Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb. Cortex 24, 2258–2267 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. 135

    Assaf, Y. & Cohen, Y. Non-mono-exponential attenuation of water and N-acetyl aspartate signals due to diffusion in brain tissue. J. Magn. Reson. 131, 69–85 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Clark, C.A. & Le Bihan, D. Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn. Reson. Med. 44, 852–859 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Stanisz, G.J., Szafer, A., Wright, G.A. & Henkelman, R.M. An analytical model of restricted diffusion in bovine optic nerve. Magn. Reson. Med. 37, 103–111 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Behrens, T.E. et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Assaf, Y. & Basser, P.J. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage 27, 48–58 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  140. 140

    Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y. & Basser, P.J. AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59, 1347–1354 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  141. 141

    Barazany, D., Basser, P.J. & Assaf, Y. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 132, 1210–1220 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  142. 142

    Alexander, D.C. et al. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52, 1374–1389 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  143. 143

    Tournier, J.-D., Mori, S. & Leemans, A. Diffusion tensor imaging and beyond. Magn. Reson. Med. 65, 1532–1556 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  144. 144

    Dell'Acqua, F., Simmons, A., Williams, S.C.R. & Catani, M. Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion. Hum. Brain Mapp. 34, 2464–2483 (2013).

    Article  Google Scholar 

  145. 145

    Kaden, E., Knösche, T.R. & Anwander, A. Parametric spherical deconvolution: inferring anatomical connectivity using diffusion MR imaging. Neuroimage 37, 474–488 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  146. 146

    Sotiropoulos, S.N., Behrens, T.E.J. & Jbabdi, S. Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI. Neuroimage 60, 1412–1425 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  147. 147

    Zhang, H., Schneider, T., Wheeler-Kingshott, C.A. & Alexander, D.C. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61, 1000–1016 (2012).

    Article  Google Scholar 

  148. 148

    Paus, T. Population Neuroscience. (Springer-Verlag, 2013).

  149. 149

    Falk, E.B. et al. What is a representative brain? Neuroscience meets population science. Proc. Natl. Acad. Sci. USA 110, 17615–17622 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  150. 150

    Paus, T. Population neuroscience. in Neuroepidemiology, Volume 138 (eds. Rosano, C.I.M., Ikram, M.A. & Ganguli, M.) 17–37 (Elsevier, 2016).

  151. 151

    Alzheimer’s Disease Neuroimaging Initiative, EPIGEN Consortium, IMAGEN Consortium, Saguenay Youth Study (SYS) Group. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 8, 153–182 (2014).

    Google Scholar 

  152. 152

    CHARGE Consortium. Design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ Cardiovasc Genet 2, 73–80 (2009).

    Article  Google Scholar 

  153. 153

    Odgers, C.L., Caspi, A., Bates, C.J., Sampson, R.J. & Moffitt, T.E. Systematic social observation of children’s neighborhoods using Google Street View: a reliable and cost-effective method. J. Child Psychol. Psychiatry 53, 1009–1017 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  154. 154

    Mazziotta, J. et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Phil. Trans. R. Soc. Lond. B 356, 1293–1322 (2001).

    Article  CAS  Google Scholar 

  155. 155

    French, L. & Paus, T. A FreeSurfer view of the cortical transcriptome generated from the Allen Human Brain Atlas. Front. Neurosci. 9, 323 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  156. 156

    French, L. et al. early cannabis use, polygenic risk score for schizophrenia and brain maturation in adolescence. JAMA Psychiatry 72, 1002–1011 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  157. 157

    Giedd, J.N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863 (1999).

    Article  CAS  Google Scholar 

  158. 158

    Mills, K.L. et al. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. Neuroimage 141, 273–281 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. 159

    Raznahan, A. et al. Longitudinal four-dimensional mapping of subcortical anatomy in human development. Proc. Natl. Acad. Sci. USA 111, 1592–1597 (2014).

    Article  CAS  Google Scholar 

  160. 160

    Schmitt, J.E. et al. The dynamic role of genetics on cortical patterning during childhood and adolescence. Proc. Natl. Acad. Sci. USA 111, 6774–6779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Shaw, P. et al. Intellectual ability and cortical development in children and adolescents. Nature 440, 676–679 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. 162

    Shaw, P. et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc. Natl. Acad. Sci. USA 104, 19649–19654 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  163. 163

    Raznahan, A. et al. Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron 72, 873–884 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Vandekar, S.N. et al. Topologically dissociable patterns of development of the human cerebral cortex. J. Neurosci. 35, 599–609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Toro, R. et al. Brain volumes and Val66Met polymorphism of the BDNF gene: local or global effects? Brain Struct. Funct. 213, 501–509 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. 166

    Reardon, P.K. et al. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans. J. Neurosci. 36, 2438–2448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. 167

    Lee, N.R. et al. Anatomical coupling among distributed cortical regions in youth varies as a function of individual differences in vocabulary abilities. Hum. Brain Mapp. 35, 1885–1895 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. 168

    Alexander-Bloch, A.F. et al. Abnormal cortical growth in schizophrenia targets normative modules of synchronized development. Biol. Psychiatry 76, 438–446 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. 169

    Honey, C.J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA 106, 2035–2040 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  170. 170

    Alexander-Bloch, A., Raznahan, A., Bullmore, E. & Giedd, J. The convergence of maturational change and structural covariance in human cortical networks. J. Neurosci. 33, 2889–2899 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L. & Greicius, M.D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. 172

    Studholme, C. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping. Annu. Rev. Biomed. Eng. 13, 345–368 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Kim, H. et al. NEOCIVET: Towards accurate morphometry of neonatal gyrification and clinical applications in preterm newborns. Neuroimage 138, 28–42 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  174. 174

    Dubois, J. et al. Primary cortical folding in the human newborn: an early marker of later functional development. Brain 131, 2028–2041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. 175

    Anderson, P.J., Cheong, J.L.Y. & Thompson, D.K. The predictive validity of neonatal MRI for neurodevelopmental outcome in very preterm children. Semin. Perinatol. 39, 147–158 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Hammill for his assistance in the preparation of Figures 2 and 3, which contain data from The Ontario Brain Institutes' POND grant (to J.P.L.), and we thank L. Wald (Massachusetts General Hospital) for providing the images in Figure 6. Figure 1 contains data from R01MH085772-01A1 (to T.P.).

Author information

Affiliations

Authors

Contributions

J.P.L., A.J.W.v.d.K., A.R., T.P., H.J.B., K.L.M., S.M.S., B.F. and S.N.S. conceptualized this review. J.P.L., A.J.W.v.d.K., A.R., T.P., B.F. and S.N.S. wrote the initial draft. J.P.L., A.J.W.v.d.K., A.R., T.P., H.J.B., K.L.M., S.M.S., B.F. and S.N.S. edited the final manuscript.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lerch, J., van der Kouwe, A., Raznahan, A. et al. Studying neuroanatomy using MRI. Nat Neurosci 20, 314–326 (2017). https://doi.org/10.1038/nn.4501

Download citation

Further reading