Review Article | Published:

Dynamic models of large-scale brain activity

Nature Neuroscience volume 20, pages 340352 (2017) | Download Citation

Abstract

Movement, cognition and perception arise from the collective activity of neurons within cortical circuits and across large-scale systems of the brain. While the causes of single neuron spikes have been understood for decades, the processes that support collective neural behavior in large-scale cortical systems are less clear and have been at times the subject of contention. Modeling large-scale brain activity with nonlinear dynamical systems theory allows the integration of experimental data from multiple modalities into a common framework that facilitates prediction, testing and possible refutation. This work reviews the core assumptions that underlie this computational approach, the methodological framework that fosters the translation of theory into the laboratory, and the emerging body of supporting evidence. While substantial challenges remain, evidence supports the view that collective, nonlinear dynamics are central to adaptive cortical activity. Likewise, aberrant dynamic processes appear to underlie a number of brain disorders.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Propagation of electrical signals along giant nerve fibres. Philos. Trans. R. Soc. Lond. B Biol. Sci. 140, 177–183 (1952).

  2. 2.

    Dynamic Patterns: The Self-Organization of Brain and Behavior (MIT Press, 1997).

  3. 3.

    , & Quantifying causal emergence shows that macro can beat micro. Proc. Natl. Acad. Sci. USA 110, 19790–19795 (2013).

  4. 4.

    & Electric Fields of the Brain: The Neurophysics of EEG (Oxford Univ. Press, 2006).

  5. 5.

    Synergetik: Eine Einführung (Springer, 1982).

  6. 6.

    & Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960–963 (1996).

  7. 7.

    , & Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56, 826 (1997).

  8. 8.

    et al. Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys. Rev. E 76, 051901 (2007).

  9. 9.

    Nonlinear gain mediating cortical stimulus-response relations. Biol. Cybern. 33, 237–247 (1979).

  10. 10.

    Mass Action in the Nervous System: Examination of the Neurophysiological Basis of Adaptive Behavior through the EEG (Academic Press, London, 1975).

  11. 11.

    et al. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex 16, 1296–1313 (2006).

  12. 12.

    , , , & Scale-free bursting in human cortex following hypoxia at birth. J. Neurosci. 34, 6557–6572 (2014).

  13. 13.

    , & Emergence of spatially heterogeneous burst suppression in a neural field model of electrocortical activity. Front. Syst. Neurosci. 9, 18 (2015).

  14. 14.

    & A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J. Biol. Rhythms 22, 167–179 (2007).

  15. 15.

    & Modeling the effects of anesthesia on the electroencephalogram. Phys. Rev. E 71, 041902 (2005).

  16. 16.

    , , & Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. USA 104, 10240–10245 (2007).

  17. 17.

    , , , & Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. USA 106, 10302–10307 (2009).

  18. 18.

    , & Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E 65, 041924 (2002).

  19. 19.

    et al. Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci. 31, 6353–6361 (2011).

  20. 20.

    et al. Model driven EEG/fMRI fusion of brain oscillations. Hum. Brain Mapp. 30, 2701–2721 (2009).

  21. 21.

    , & Stochastic dynamic causal modelling of fMRI data: should we care about neural noise? Neuroimage 62, 464–481 (2012).

  22. 22.

    & Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

  23. 23.

    Über die Integrale des Vielkörper-problems. Acta Math. 11, 25–96 (1887).

  24. 24.

    & Les méthodes nouvelles de la mécanique céleste. Nuovo Cimento 10, 128–130 (1899).

  25. 25.

    & Dynamics: The Geometry of Behavior (Aerial Press, 1983).

  26. 26.

    , , , & Towards the virtual brain: network modeling of the intact and the damaged brain. Arch. Ital. Biol. 148, 189–205 (2010).

  27. 27.

    , & A theoretical model of phase transitions in human hand movements. Biol. Cybern. 51, 347–356 (1985).

  28. 28.

    , & Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

  29. 29.

    , , & Brain noise is task dependent and region specific. J. Neurophysiol. 104, 2667–2676 (2010).

  30. 30.

    & Stochastic Methods in Neuroscience (Oxford Univ. Press, 2010).

  31. 31.

    , , & A canonical model of multistability and scale-invariance in biological systems. PLoS Comput. Biol. 8, e1002634 (2012).

  32. 32.

    More is different. Science 177, 393–396 (1972).

  33. 33.

    Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr. Clin. Neurophysiol. 79, 81–93 (1991).

  34. 34.

    , & On the simulation of large populations of neurons. J. Comput. Neurosci. 8, 51–63 (2000).

  35. 35.

    & Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Comput. 14, 2057–2110 (2002).

  36. 36.

    & A master equation formalism for macroscopic modeling of asynchronous irregular activity states. Neural Comput. 21, 46–100 (2009).

  37. 37.

    , , , & The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008).

  38. 38.

    , & Stochastic models of neuronal dynamics. Phil. Trans. R. Soc. Lond. B 360, 1075–1091 (2005).

  39. 39.

    , , & Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).

  40. 40.

    The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

  41. 41.

    , & Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 19, 404–413 (2016).

  42. 42.

    & Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).

  43. 43.

    et al. Universal critical dynamics in high resolution neuronal avalanche data. Phys. Rev. Lett. 108, 208102 (2012).

  44. 44.

    , & The heavy tail of the human brain. Curr. Opin. Neurobiol. 31, 164–172 (2015).

  45. 45.

    & Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73, 357–366 (1995).

  46. 46.

    , , & Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik 15, 27–37 (1974).

  47. 47.

    , , & Population dynamics: variance and the sigmoid activation function. Neuroimage 42, 147–157 (2008).

  48. 48.

    , & A coupled ordinary differential equation lattice model for the simulation of epileptic seizures. Chaos 9, 795–804 (1999).

  49. 49.

    , & Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a nonlinear model of neuronal dynamics. Network 14, 703–732 (2003).

  50. 50.

    & Reduced representations of heterogeneous mixed neural networks with synaptic coupling. Phys. Rev. E 83, 026204 (2011).

  51. 51.

    & Neural population modes capture biologically realistic large scale network dynamics. Bull. Math. Biol. 73, 325–343 (2011).

  52. 52.

    , , & A recurrent network model of somatosensory parametric working memory in the prefrontal cortex. Cereb. Cortex 13, 1208–1218 (2003).

  53. 53.

    & A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328 (2006).

  54. 54.

    , & A novel method for the topographic analysis of neural activity reveals formation and dissolution of 'dynamic cell assemblies'. J. Comput. Neurosci. 16, 49–68 (2004).

  55. 55.

    & Dynamics of a neural system with a multiscale architecture. Phil. Trans. R. Soc. Lond. B 360, 1051–1074 (2005).

  56. 56.

    et al. Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Phil. Trans. R. Soc. Lond. B 356, 1159–1186 (2001).

  57. 57.

    et al. Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. PLoS Biol. 14, e1002512 (2016).

  58. 58.

    & Biophysical network models and the human connectome. Neuroimage 80, 330–338 (2013).

  59. 59.

    , , & Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. Sci. Adv. 2, e1601335 (2016).

  60. 60.

    Properties of a mass of cells capable of regenerating pulses. Phil. Trans. R. Soc. Lond. B 240, 55–94 (1956).

  61. 61.

    Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977).

  62. 62.

    The brain wave equation: a model for the EEG. Math. Biosci. 21, 279–297 (1974).

  63. 63.

    & A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D 99, 503–526 (1997).

  64. 64.

    Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations. Phys. Rev. E 73, 041904 (2006).

  65. 65.

    Waves in spatially-disordered neural fields: a case study in uncertainty quantification. in Uncertainty in Biology 367–391 (Springer International, 2016).

  66. 66.

    , & Unified neurophysical model of EEG spectra and evoked potentials. Biol. Cybern. 86, 457–471 (2002).

  67. 67.

    et al. Eigenmodes of brain activity: neural field theory predictions and comparison with experiment. Neuroimage 142, 79–98 (2016).

  68. 68.

    , , & The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat. Commun. 5, 3675 (2014).

  69. 69.

    , & Propagating waves mediate information transfer in the motor cortex. Nat. Neurosci. 9, 1549–1557 (2006).

  70. 70.

    , & A dendritic mechanism for decoding traveling waves: principles and applications to motor cortex. PLoS Comput. Biol. 9, e1003260 (2013).

  71. 71.

    & Geometric effects on complex network structure in the cortex. Phys. Rev. Lett. 107, 018102 (2011).

  72. 72.

    et al. The contribution of geometry to the human connectome. Neuroimage 124, 379–393 (2016).

  73. 73.

    & Next generation neural mass models. Preprint at (2016).

  74. 74.

    et al. A neural mass model of spectral responses in electrophysiology. Neuroimage 37, 706–720 (2007).

  75. 75.

    , , & Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985).

  76. 76.

    & Characterization of strange attractors. Phys. Rev. Lett. 50, 346 (1983).

  77. 77.

    & Evidence of chaotic dynamics underlying the human alpha-rhythm electroencephalogram. Biol. Cybern. 62, 55–62 (1989).

  78. 78.

    & Dimensional analysis of no-task human EEG using the Grassberger-Procaccia method. Psychophysiology 29, 182–192 (1992).

  79. 79.

    , & Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys. Lett. A 111, 152–156 (1985).

  80. 80.

    , , & Comparisons of the nonlinear dynamics of electroencephalograms under various task loading conditions: a preliminary report. Biol. Psychol. 31, 173–191 (1990).

  81. 81.

    & Low-dimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci. USA 83, 3513–3517 (1986).

  82. 82.

    Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. A Gen. Phys. 34, 2427–2432 (1986).

  83. 83.

    & Finite correlation dimension for stochastic systems with power-law spectra. Physica D 35, 357–381 (1989).

  84. 84.

    , , & Filtered noise can mimic low-dimensional chaotic attractors. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, 2289–2297 (1993).

  85. 85.

    , & Dimensional analysis of resting human EEG. II: Surrogate-data testing indicates nonlinearity but not low-dimensional chaos. Psychophysiology 32, 486–491 (1995).

  86. 86.

    Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos. Biol. Cybern. 75, 389–396 (1996).

  87. 87.

    , , , & Testing for nonlinearity in time series: the method of surrogate data. Physica D 58, 77–94 (1992).

  88. 88.

    & Generating surrogate data for time series with several simultaneously measured variables. Phys. Rev. Lett. 73, 951–954 (1994).

  89. 89.

    , , & Dynamics of the human alpha rhythm: evidence for non-linearity? Clin. Neurophysiol. 110, 1801–1813 (1999).

  90. 90.

    Nonlinear phase desynchronization in human electroencephalographic data. Hum. Brain Mapp. 15, 175–198 (2002).

  91. 91.

    , , , & Bistability and non-Gaussian fluctuations in spontaneous cortical activity. J. Neurosci. 29, 8512–8524 (2009).

  92. 92.

    , , , & Nonlinear EEG analysis based on a neural mass model. Biol. Cybern. 81, 415–424 (1999).

  93. 93.

    , , , & Seizure detection in the neonatal EEG with synchronization likelihood. Clin. Neurophysiol. 114, 50–55 (2003).

  94. 94.

    et al. Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44 (Suppl. 12): 72–83 (2003).

  95. 95.

    , & Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126, 467–484 (2004).

  96. 96.

    , , , & On the nature of seizure dynamics. Brain 137, 2210–2230 (2014).

  97. 97.

    , , , & Hemodynamic traveling waves in human visual cortex. PLoS Comput. Biol. 8, e1002435 (2012).

  98. 98.

    , & Reciprocal interactions of the SMA and cingulate cortex sustain premovement activity for voluntary actions. J. Neurosci. 34, 16397–16407 (2014).

  99. 99.

    & Encyclopedia of Computational Neuroscience 1919–1944 (Springer, 2015).

  100. 100.

    , & Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).

  101. 101.

    et al. Nonlinear dynamic causal models for fMRI. Neuroimage 42, 649–662 (2008).

  102. 102.

    et al. Fast transient networks in spontaneous human brain activity. Elife 3, e01867 (2014).

  103. 103.

    & Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50, 81–98 (2010).

  104. 104.

    , , , & Time-resolved resting-state brain networks. Proc. Natl. Acad. Sci. USA 111, 10341–10346 (2014).

  105. 105.

    , , , & Functional connectivity dynamics: modeling the switching behavior of the resting state. Neuroimage 105, 525–535 (2015).

  106. 106.

    , & Perception and self-organized instability. Front. Comput. Neurosci. 6, 44 (2012).

  107. 107.

    , & Exploring the network dynamics underlying brain activity during rest. Prog. Neurobiol. 114, 102–131 (2014).

  108. 108.

    & The frustrated brain: from dynamics on motifs to communities and networks. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20130532 (2014).

  109. 109.

    & Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 32, 3366–3375 (2012).

  110. 110.

    Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav. Brain Sci. 24, 793–810 discussion 810–848 (2001).

  111. 111.

    et al. On the stability of BOLD fMRI correlations. Cereb. Cortex (2016).

  112. 112.

    et al. Unexpected arousal modulates the influence of sensory noise on confidence. Elife 5, e18103 (2016).

  113. 113.

    & Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI. Neuroimage 47, 1381–1393 (2009).

  114. 114.

    , , & The integration of the internal and external milieu in the insula during dynamic emotional experiences. Neuroimage 124, 455–463 (2016).

  115. 115.

    & Towards a statistical test for functional connectivity dynamics. Neuroimage 114, 466–470 (2015).

  116. 116.

    & On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage 104, 430–436 (2015).

  117. 117.

    , & Investigation of nonlinear structure in multichannel EEG. Phys. Lett. A 202, 352–358 (1995).

  118. 118.

    “Dynamic” connectivity in neural systems: theoretical and empirical considerations. Neuroinformatics 2, 205–226 (2004).

  119. 119.

    , , & Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett. 110, 178101 (2013).

  120. 120.

    , , & Critical role for resource constraints in neural models. Front. Syst. Neurosci. 8, 154–159 (2014).

  121. 121.

    , , & A critical role for network structure in seizure onset: a computational modeling approach. Front. Neurol. 5, 261 (2014).

  122. 122.

    et al. The virtual epileptic patient: individualized whole-brain models of epilepsy spread. Neuroimage 145, 377–388 (2017).

  123. 123.

    et al. Cortical burst dynamics predict clinical outcome early in extremely preterm infants. Brain 138, 2206–2218 (2015).

  124. 124.

    , , , & A neurophysiological-metabolic model for burst suppression. Proc. Natl. Acad. Sci. USA 109, 3095–3100 (2012).

  125. 125.

    & The mesoscopic modeling of burst suppression during anesthesia. Front. Comput. Neurosci. 7, 46 (2013).

  126. 126.

    Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116, 2266–2301 (2005).

  127. 127.

    , & Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull. 35, 509–527 (2009).

  128. 128.

    et al. A disturbance of nonlinear interdependence in scalp EEG of subjects with first episode schizophrenia. Neuroimage 20, 466–478 (2003).

  129. 129.

    et al. Structural and functional dysconnectivity of the fronto-thalamic system in schizophrenia: a DCM-DTI study. Cortex 66, 35–45 (2015).

  130. 130.

    , , , & Disrupted effective connectivity of cortical systems supporting attention and interoception in melancholia. JAMA Psychiatry 72, 350–358 (2015).

  131. 131.

    , , & Translational perspectives for computational neuroimaging. Neuron 87, 716–732 (2015).

  132. 132.

    et al. Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology. Lancet Psychiatry 3, 84–90 (2016).

  133. 133.

    et al. Network dysfunction of emotional and cognitive processes in those at genetic risk of bipolar disorder. Brain 138, 3427–3439 (2015).

  134. 134.

    , & Critical slowing and perception. Criticality in Neural Systems (eds. Plenz, D. & Niebur, E.) 191–226 (Wiley, 2014).

  135. 135.

    , & A dynamical systems hypothesis of schizophrenia. PLoS Comput. Biol. 3, e228 (2007).

  136. 136.

    et al. Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model. Cereb. Cortex 24, 859–872 (2014).

  137. 137.

    et al. Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr. Biol. 16, 1479–1488 (2006).

  138. 138.

    et al. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields. Elife 5, e15252 (2016).

  139. 139.

    , , , & Transcranial direct current stimulation changes resting state functional connectivity: A large-scale brain network modeling study. Neuroimage 140, 174–187 (2016).

  140. 140.

    , & Mapping how local perturbations influence systems-level brain dynamics. Neuroimage (2016).

  141. 141.

    et al. Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc. Natl. Acad. Sci. USA 106, 15921–15926 (2009).

  142. 142.

    , , , & Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005).

  143. 143.

    , , & Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Comput. Biol. 7, e1002038 (2011).

  144. 144.

    , & Dynamical synapses causing self-organized criticality in neural networks. Nat. Phys. 3, 857–860 (2007).

  145. 145.

    , , & Self-organized criticality occurs in non-conservative neuronal networks during Up states. Nat. Phys. 6, 801–805 (2010).

  146. 146.

    et al. Losing control under ketamine: suppressed cortico-hippocampal drive following acute ketamine in rats. Neuropsychopharmacology 40, 268–277 (2015).

  147. 147.

    & Kinetic models of brain activity. Brain Imaging Behav. 2, 270–288 (2008).

  148. 148.

    Information Theory and the Living System (Columbia Univ. Press, 1972).

  149. 149.

    , , & Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 21, 1370–1377 (2001).

  150. 150.

    , , & Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342 (2008).

Download references

Acknowledgements

The author would like to thank J. Roberts, L. Gollo and L. Cocchi for detailed comments on the manuscript and C. Schneider, V. Nguyen, A. Perry, S. Sonkusare and M. Flynn for assistance with the figures. This manuscript was supported by the National Health and Medical Research Council (118153, 10371296, 1095227) and the Australian Research Council (CE140100007).

Author information

Affiliations

  1. QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.

    • Michael Breakspear
  2. Metro North Mental Health Service, Herston, Queensland, Australia.

    • Michael Breakspear

Authors

  1. Search for Michael Breakspear in:

Competing interests

The author declares no competing financial interests.

Corresponding author

Correspondence to Michael Breakspear.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nn.4497

Further reading