Abstract

Pregnancy involves radical hormone surges and biological adaptations. However, the effects of pregnancy on the human brain are virtually unknown. Here we show, using a prospective ('pre'-'post' pregnancy) study involving first-time mothers and fathers and nulliparous control groups, that pregnancy renders substantial changes in brain structure, primarily reductions in gray matter (GM) volume in regions subserving social cognition. The changes were selective for the mothers and highly consistent, correctly classifying all women as having undergone pregnancy or not in-between sessions. Interestingly, the volume reductions showed a substantial overlap with brain regions responding to the women's babies postpartum. Furthermore, the GM volume changes of pregnancy predicted measures of postpartum maternal attachment, suggestive of an adaptive process serving the transition into motherhood. Another follow-up session showed that the GM reductions endured for at least 2 years post-pregnancy. Our data provide the first evidence that pregnancy confers long-lasting changes in a woman's brain.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & The expectant brain: adapting for motherhood. Nat. Rev. Neurosci. 9, 11–25 (2008).

  2. 2.

    , , & Placental endocrinology. in The Human Placenta (ed. Redman, C.W.G.) 237–272 (Blackwell Scientific, Oxford, 1993).

  3. 3.

    Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu. Rev. Neurosci. 25, 507–536 (2002).

  4. 4.

    , , & Sex steroids and brain structure in pubertal boys and girls: a mini-review of neuroimaging studies. Neuroscience 191, 28–37 (2011).

  5. 5.

    & The neural basis of puberty and adolescence. Nat. Neurosci. 7, 1040–1047 (2004).

  6. 6.

    & Pubertal hormones organize the adolescent brain and behavior. Front. Neuroendocrinol. 26, 163–174 (2005).

  7. 7.

    , & Functional and molecular neuroimaging of menopause and hormone replacement therapy. Front. Neurosci. 8, 388 (2014).

  8. 8.

    & Estrogen: effects on normal brain function and neuropsychiatric disorders. Climacteric 10 (Suppl. 2), 97–104 (2007).

  9. 9.

    , , , & Emotional and cognitive functional imaging of estrogen and progesterone effects in the female human brain: a systematic review. Psychoneuroendocrinology 50, 28–52 (2014).

  10. 10.

    et al. Phosphorus-31 brain MR spectroscopy in women during and after pregnancy compared with nonpregnant control subjects. AJNR Am. J. Neuroradiol. 26, 352–356 (2005).

  11. 11.

    , , , & Altered prefrontal cortical function during processing of fear-relevant stimuli in pregnancy. Behav. Brain Res. 222, 200–205 (2011).

  12. 12.

    , , & Magnetic resonance spectroscopy in pre-eclampsia: evidence of cerebral ischaemia. BJOG 110, 416–423 (2003).

  13. 13.

    & Über die Schwangerschaftsveränderung der Hypophyse. Ziegler's. Beitr. Pathol. Anat. 45, 1–17 (1909).

  14. 14.

    , & Anatomical variations in the pituitary gland and adjacent structures in 225 human autopsy cases. J. Neurosurg. 28, 93–99 (1968).

  15. 15.

    et al. Pituitary gland growth during normal pregnancy: an in vivo study using magnetic resonance imaging. Am. J. Med. 85, 217–220 (1988).

  16. 16.

    et al. Change in brain size during and after pregnancy: study in healthy women and women with preeclampsia. AJNR Am. J. Neuroradiol. 23, 19–26 (2002).

  17. 17.

    , , & The maternal brain: an organ with peripartal plasticity. Neural Plast. 2014, 574159 (2014).

  18. 18.

    & Why the maternal brain? J. Neuroendocrinol. 23, 974–983 (2011).

  19. 19.

    , & Sex steroid hormone determination of the maternal brain: effects beyond reproduction. Mini Rev. Med. Chem. 12, 1063–1070 (2012).

  20. 20.

    & Changes in anxiety and cognition due to reproductive experience: a review of data from rodent and human mothers. Neurosci. Biobehav. Rev. 34, 452–467 (2010).

  21. 21.

    , & Reproductive experience may positively adjust the trajectory of senescence. Curr. Top. Behav. Neurosci. 10, 317–345 (2012).

  22. 22.

    , , , & Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9–34 (2014).

  23. 23.

    et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

  24. 24.

    & The assessment of parent-to-infant attachment: development of a self-report questionnaire instrument. J. Reprod. Infant Psychol. 16, 57–76 (1998).

  25. 25.

    et al. Approaching the biology of human parental attachment: brain imaging, oxytocin and coordinated assessments of mothers and fathers. Brain Res. 1580, 78–101 (2014).

  26. 26.

    The social brain in adolescence. Nat. Rev. Neurosci. 9, 267–277 (2008).

  27. 27.

    , , , & A longitudinal study: changes in cortical thickness and surface area during pubertal maturation. PLoS One 10, e0119774 (2015).

  28. 28.

    et al. Sex steroids and brain structure in pubertal boys and girls. Psychoneuroendocrinology 34, 332–342 (2009).

  29. 29.

    & Recognition of novel faces after single exposure is enhanced during pregnancy. Evol. Psychol. 9, 47–60 (2011).

  30. 30.

    & Cognitive reorganization during pregnancy and the postpartum period: an evolutionary perspective. Evol. Psychol. 10, 659–687 (2012).

  31. 31.

    , & Emotional sensitivity for motherhood: late pregnancy is associated with enhanced accuracy to encode emotional faces. Horm. Behav. 56, 557–563 (2009).

  32. 32.

    , , & Rethinking maternal sensitivity: mothers' comments on infants' mental processes predict security of attachment at 12 months. J. Child Psychol. Psychiatry 42, 637–648 (2001).

  33. 33.

    et al. Dynamic development of regional cortical thickness and surface area in early childhood. Cereb. Cortex 25, 2204–2212 (2015).

  34. 34.

    et al. Cortical thickness and surface area relate to specific symptoms in early relapsing-remitting multiple sclerosis. Mult. Scler. 21, 402–414 (2015).

  35. 35.

    et al. Cerebral atrophy in AIDS: a stereological study. Acta Neuropathol. 85, 617–622 (1993).

  36. 36.

    , , , & No global neocortical nerve cell loss in brains from patients with senile dementia of Alzheimer's type. Neurobiol. Aging 15, 347–352 (1994).

  37. 37.

    et al. How does your cortex grow? J. Neurosci. 31, 7174–7177 (2011).

  38. 38.

    , & Neuroplasticity in the maternal hippocampus: relation to cognition and effects of repeated stress. 77, 86–97 (2016).

  39. 39.

    et al. Motherhood and the hormones of pregnancy modify concentrations of hippocampal neuronal dendritic spines. Horm. Behav. 49, 131–142 (2006).

  40. 40.

    et al. Pregnancy or stress decrease complexity of CA3 pyramidal neurons in the hippocampus of adult female rats. Neuroscience 227, 201–210 (2012).

  41. 41.

    et al. Effects of stress early in gestation on hippocampal neurogenesis and glucocorticoid receptor density in pregnant rats. Neuroscience 290, 379–388 (2015).

  42. 42.

    & Reproductive experience alters hippocampal neurogenesis during the postpartum period in the dam. Neuroscience 149, 53–67 (2007).

  43. 43.

    , , & Multiparity-induced enhancement of hippocampal neurogenesis and spatial memory depends on ovarian hormone status in middle age. Neurobiol. Aging 36, 2391–2405 (2015).

  44. 44.

    et al. Spatial working memory and hippocampal size across pregnancy in rats. Horm. Behav. 37, 86–95 (2000).

  45. 45.

    , , , & Lactation-induced reduction in hippocampal neurogenesis is reversed by repeated stress exposure. Hippocampus 24, 673–683 (2014).

  46. 46.

    & A review of the impact of pregnancy on memory function. J. Clin. Exp. Neuropsychol. 29, 793–803 (2007).

  47. 47.

    Giving birth to a new brain: hormone exposures of pregnancy influence human memory. Psychoneuroendocrinology 35, 1148–1155 (2010).

  48. 48.

    , , & Pregnancy and post partum: changes in cognition and mood. Prog. Brain Res. 133, 303–319 (2001).

  49. 49.

    , & Cognition in pregnancy and motherhood: prospective cohort study. Br. J. Psychiatry 196, 126–132 (2010).

  50. 50.

    et al. The plasticity of human maternal brain: longitudinal changes in brain anatomy during the early postpartum period. Behav. Neurosci. 124, 695–700 (2010).

  51. 51.

    Ten ironic rules for non-statistical reviewers. Neuroimage 61, 1300–1310 (2012).

  52. 52.

    , & Changes with age in the level and duration of fertility in the menstrual cycle. Hum. Reprod. 17, 1399–1403 (2002).

  53. 53.

    et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 59 (Suppl. 20), 22–33, quiz 34–57 (1998).

  54. 54.

    & Selective and persistent effect of foetal sex on cognition in pregnant women. Neuroreport 16, 779–782 (2005).

  55. 55.

    , & Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br. J. Psychiatry 150, 782–786 (1987).

  56. 56.

    & Test de Aprendizaje Verbal España-Complutense (TEA Ediciones, 1998).

  57. 57.

    , , & California Verbal Learning Test 2nd edn. (Psychological Corporation, San Antonio, Texas, USA, 2000).

  58. 58.

    & Assessing Adolescent and Adult Intelligence 3rd edn. (Wiley, Hoboken, New Jersey, USA, 2006).

  59. 59.

    A multidimensional approach to individual differences in empathy. JSAS Catalog of Selected Documents in Psychology 10, 85–90 (1980).

  60. 60.

    & Symmetric diffeomorphic modeling of longitudinal structural MRI. Front. Neurosci. 6, 197 (2013).

  61. 61.

    & Unified segmentation. Neuroimage 26, 839–851 (2005).

  62. 62.

    A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007).

  63. 63.

    & Voxel-based morphometry—the methods. Neuroimage 11, 805–821 (2000).

  64. 64.

    , , & Validity of modulation and optimal settings for advanced voxel-based morphometry. Neuroimage 86, 81–90 (2014).

  65. 65.

    et al. Distributional assumptions in voxel-based morphometry. Neuroimage 17, 1027–1030 (2002).

  66. 66.

    et al. PRoNTo: pattern recognition for neuroimaging toolbox. Neuroinformatics 11, 319–337 (2013).

  67. 67.

    & Permutation tests for classification: towards statistical significance in image-based studies. Inf. Process. Med. Imaging 18, 330–341 (2003).

  68. 68.

    , , & SimpleMKL. J. Mach. Learn. Res. 9, 2491–2521 (2008).

  69. 69.

    & Kernel Methods for Pattern Analysis (Cambridge Univ. Press, 2004).

  70. 70.

    et al. Pituitary volume in pediatric obsessive-compulsive disorder. Biol. Psychiatry 59, 252–257 (2006).

  71. 71.

    & Avoiding asymmetry-induced bias in longitudinal image processing. Neuroimage 57, 19–21 (2011).

  72. 72.

    , , & Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61, 1402–1418 (2012).

  73. 73.

    , & Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

  74. 74.

    , & Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).

  75. 75.

    et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

Download references

Acknowledgements

We acknowledge the participants for their contribution to this study. We thank A. Bulbena for supporting the project, and M. López, G. Pons, R. Martínez, L. González, E. Castaño, N. Mallorquí-Bagué, J. Fauquet and C. Pretus for helping with the data collection and scoring of the cognitive tests. In addition, we thank C. Phillips and J.D. Gispert for advice on the multivariate analyses, E. Marinetto and C. Falcón for advice on the FreeSurfer analyses, and J. van Hemmen and J. Bakker for discussions of the project and results. E.H. was supported by a Formación de Profesorado Universitario (FPU) grant by the Ministerio de Educación y Ciencia, Spanish government, and is now supported by an Innovational Research Incentives Scheme grant (Veni, 451-14-036) of the Netherlands Organization for Scientific Research (NWO), E.B.-M. by a grant from the National Council of Science and Technology of Mexico, S.C. by the Consejería de Educación, Juventud y Deporte of Comunidad de Madrid and the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement 291820, and M.P. by an FI grant of the Agencia de Gestió d'Ajuts Universitaris de Recerca, Generalitat de Catalunya.

Author information

Author notes

    • Elseline Hoekzema
    •  & Erika Barba-Müller

    These authors contributed equally to this work.

    • Susanna Carmona
    •  & Oscar Vilarroya

    These authors jointly supervised this work.

Affiliations

  1. Unitat de Recerca en Neurociència Cognitiva, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain.

    • Elseline Hoekzema
    • , Erika Barba-Müller
    • , Marisol Picado
    • , Juan Carlos Soliva
    • , Adolf Tobeña
    • , Susanna Carmona
    •  & Oscar Vilarroya
  2. Brain and Development Laboratory, Leiden University, Leiden, the Netherlands.

    • Elseline Hoekzema
    •  & Eveline A Crone
  3. Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, the Netherlands.

    • Elseline Hoekzema
    •  & Eveline A Crone
  4. Instituto Valenciano de Infertilidad, Barcelona, Spain.

    • Cristina Pozzobon
    • , Florencio Lucco
    •  & Agustín Ballesteros
  5. Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.

    • David García-García
    • , Manuel Desco
    •  & Susanna Carmona
  6. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.

    • Susanna Carmona
  7. Fundació IMIM, Barcelona, Spain.

    • Oscar Vilarroya

Authors

  1. Search for Elseline Hoekzema in:

  2. Search for Erika Barba-Müller in:

  3. Search for Cristina Pozzobon in:

  4. Search for Marisol Picado in:

  5. Search for Florencio Lucco in:

  6. Search for David García-García in:

  7. Search for Juan Carlos Soliva in:

  8. Search for Adolf Tobeña in:

  9. Search for Manuel Desco in:

  10. Search for Eveline A Crone in:

  11. Search for Agustín Ballesteros in:

  12. Search for Susanna Carmona in:

  13. Search for Oscar Vilarroya in:

Contributions

E.H., E.B.-M., S.C., and O.V. designed the experiments. C.P., A.B., and F.L. recruited part of the participants and provided clinical information. E.B.-M. oversaw the overall timeline, recruitment and data collection of the project, and acquired the data together with E.H., M.P. and S.C. J.C.S., A.T., M.D., E.A.C. and O.V. provided facilities and advice on aspects of design, acquisition or interpretation. E.H. analyzed the data, except for the area and thickness analysis done by S.C. and D.G.-G. E.H. wrote the manuscript and all other authors evaluated and approved the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Elseline Hoekzema.

Integrated supplementary information

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–10 and Supplementary Tables 1–23

  2. 2.

    Supplementary Methods Checklist

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nn.4458