Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Translating genome-wide association findings into new therapeutics for psychiatry

Abstract

Genome-wide association studies (GWAS) in psychiatry, once they reach sufficient sample size and power, have been enormously successful. The Psychiatric Genomics Consortium (PGC) aims for mega-analyses with sample sizes that will grow to >1 million individuals in the next 5 years. This should lead to hundreds of new findings for common genetic variants across nine psychiatric disorders studied by the PGC. The new targets discovered by GWAS have the potential to restart largely stalled psychiatric drug development pipelines, and the translation of GWAS findings into the clinic is a key aim of the recently funded phase 3 of the PGC. This is not without considerable technical challenges. These approaches complement the other main aim of GWAS studies, risk prediction approaches for improving detection, differential diagnosis, and clinical trial design. This paper outlines the motivations, technical and analytical issues, and the plans for translating PGC phase 3 findings into new therapeutics.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: PGC GWAS drug target analysis strategy: utilizing diverse information sources for drug target discovery.

References

  1. 1

    Fibiger, H.C. Schizophr. Bull. 38, 649–650 (2012).

    Article  Google Scholar 

  2. 2

    Rizzo, S.J., Edgerton, J.R., Hughes, Z.A. & Brandon, N.J. J. Biomol. Screen. 18, 509–521 (2013).

    Article  Google Scholar 

  3. 3

    Papassotiropoulos, A. & de Quervain, D.J. Trends Cogn. Sci. 19, 183–187 (2015).

    Article  Google Scholar 

  4. 4

    Jones, H.J. et al. JAMA Psychiatry 73, 221–228 (2016).

    Article  Google Scholar 

  5. 5

    O'Donnell, P. & Ehlers, M.D. JAMA Psychiatry 72, 1067–1068 (2015).

    Article  Google Scholar 

  6. 6

    Shorter, E. Can. J. Psychiatry 56, 193–197 (2011).

    Article  Google Scholar 

  7. 7

    Fitzgerald, K. et al. Lancet 383, 60–68 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Pearson, E. Nat. Genet. 46, 323–324 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Lu, W. et al. Hum. Mol. Genet. 24, 2390–2400 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Schizophrenia Working Group of the Psychiatric Genomics Consortium. Nature 511, 421–427 (2014).

  11. 11

    Purcell, S.M. et al. Nature 506, 185–190 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Fromer, M. et al. Nature 506, 179–184 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Okada, Y. Clin. Genet. 86, 432–440 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Teslovich, T.M. et al. Nature 466, 707–713 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Manolio, T.A. et al. Genet. Med. 15, 258–267 (2013).

    Article  Google Scholar 

  16. 16

    Sanseau, P. et al. Nat. Biotechnol. 30, 317–320 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Nelson, M.R. et al. Nat. Genet. 47, 856–860 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Ripke, S. et al. Nat. Genet. 45, 1150–1159 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Mangravite, L.M. et al. Arterioscler. Thromb. Vasc. Biol. 30, 1485–1492 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Sekar, A. et al. Nature 530, 177–183 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Akbarian, S. et al. Nat. Neurosci. 18, 1707–1712 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Fromer, M. et al. Nat. Neurosci. 19, 1442–1453 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Gusev, A. et al. Nat. Genet. 48, 245–252 (2016).

    CAS  Article  Google Scholar 

  24. 24

    Gamazon, E.R. et al. Nat. Genet. 47, 1091–1098 (2015).

    CAS  Article  Google Scholar 

  25. 25

    BrainSeq: A Human Brain Genomics Consortium. Neuron 88, 1078–1083 (2015).

  26. 26

    Gandal, M.J., Leppa, V., Won, H., Parikshak, N.N. & Geschwind, D.H. Nat. Neurosci. 19, 1463–1476 (2016).

    Article  Google Scholar 

  27. 27

    Cao, C. & Moult, J. BMC Genomics 15 (suppl. 4), S5 (2014).

    Article  Google Scholar 

  28. 28

    Segrè, A.V., Wei, N., Altshuler, D. & Florez, J.C. Diabetes 64, 1470–1483 (2015).

    Article  Google Scholar 

  29. 29

    Lee, S.H. et al. Nat. Genet. 45, 984–994 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Schubert, C.R., Xi, H.S., Wendland, J.R. & O'Donnell, P. Neuron 84, 537–541 (2014).

    CAS  Article  Google Scholar 

  31. 31

    Sun, Y. & Dolmetsch, R.E. Swiss Med. Wkly. 146, w14241 (2016).

    PubMed  Google Scholar 

  32. 32

    Chatterjee, N., Shi, J. & García-Closas, M. Nat. Rev. Genet. 17, 392–406 (2016).

    CAS  Article  Google Scholar 

  33. 33

    Wray, N.R., Goddard, M.E. & Visscher, P.M. Genome Res. 17, 1520–1528 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Dima, D. & Breen, G. J. Psychopharmacol. 29, 867–871 (2015).

    CAS  Article  Google Scholar 

  35. 35

    Hu, Y. et al. Am. J. Hum. Genet. 92, 547–557 (2013).

    CAS  Article  Google Scholar 

  36. 36

    Agerbo, E. et al. JAMA Psychiatry 72, 635–641 (2015).

    Article  Google Scholar 

  37. 37

    Vassos, E. et al. Biol. Psychiatry http://dx.doi.org/10.1016/j.biopsych.2016.06.028 (2016).

  38. 38

    de Leeuw, C.A., Mooij, J.M., Heskes, T. & Posthuma, D. PLOS Comput. Biol. 11, e1004219 (2015).

    Article  Google Scholar 

  39. 39

    De Jong, S., Vidler, L., Mokrab, Y., Collier, D.A. & Breen, G.D. J. Psychopharmacol. 30, 826–830 (2016).

    CAS  Article  Google Scholar 

  40. 40

    Stefansson, H. et al. Nature 505, 361–366 (2014).

    CAS  Article  Google Scholar 

  41. 41

    Wellcome Trust Case Control Consortium. Nature 464, 713–720 (2010).

  42. 42

    Rucker, J.J. et al. Mol. Psychiatry 18, 183–189 (2013).

    CAS  Article  Google Scholar 

  43. 43

    Network & Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Nat. Neurosci. 18, 199–209 (2015).

  44. 44

    Prathipati, P. & Mizuguchi, K. Curr. Top. Med. Chem. 16, 1009–1025 (2016).

    CAS  Article  Google Scholar 

  45. 45

    Greene, C.S. et al. Nat. Genet. 47, 569–576 (2015).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerome Breen.

Ethics declarations

Competing interests

Many of the authors work for pharmaceutical companies and/or have grants from them.

Supplementary information

Supplementary Table 1

Current and recent trials in psychiatry, including the nine disorders studied in the PGC phase 3 (XLSX 1844 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Breen, G., Li, Q., Roth, B. et al. Translating genome-wide association findings into new therapeutics for psychiatry. Nat Neurosci 19, 1392–1396 (2016). https://doi.org/10.1038/nn.4411

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing