Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dorsal anterior cingulate cortex and the value of control

Abstract

Debates over the function(s) of dorsal anterior cingulate cortex (dACC) have persisted for decades. So too have demonstrations of the region's association with cognitive control. Researchers have struggled to account for this association and, simultaneously, dACC's involvement in phenomena related to evaluation and motivation. We describe a recent integrative theory that achieves this goal. It proposes that dACC serves to specify the currently optimal allocation of control by determining the overall expected value of control (EVC), thereby licensing the associated cognitive effort. The EVC theory accounts for dACC's sensitivity to a wide array of experimental variables, and their relationship to subsequent control adjustments. Finally, we contrast our theory with a recent theory proposing a primary role for dACC in foraging-like decisions. We describe why the EVC theory offers a more comprehensive and coherent account of dACC function, including dACC's particular involvement in decisions regarding foraging or otherwise altering one's behavior.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: dACC's proposed role in control allocation based on EVC.
Figure 2: Decisions about engaging in a current task versus an alternate task from the perspective of FVT and EVC.
Figure 3: Disentangling potential explanations for dACC involvement in foraging settings.

References

  1. 1

    Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S. & Cohen, J.D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Holroyd, C.B. & Yeung, N. Motivation of extended behaviors by anterior cingulate cortex. Trends Cogn. Sci. 16, 122–128 (2012).

    Google Scholar 

  3. 3

    Rushworth, M.F.S., Kolling, N., Sallet, J. & Mars, R.B. Valuation and decision-making in frontal cortex: one or many serial or parallel systems? Curr. Opin. Neurobiol. 22, 946–955 (2012).

    CAS  Google Scholar 

  4. 4

    Shenhav, A., Botvinick, M.M. & Cohen, J.D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Heilbronner, S.R. & Hayden, B.Y. Dorsal anterior cingulate cortex: a bottom-up view. Annu. Rev. Neurosci. 39, 149–170 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Shackman, A.J. et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12, 154–167 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Cole, M.W., Yeung, N., Freiwald, W.A. & Botvinick, M. Cingulate cortex: diverging data from humans and monkeys. Trends Neurosci. 32, 566–574 (2009).

    CAS  PubMed  Google Scholar 

  8. 8

    Vogt, B.A. Midcingulate cortex: Structure, connections, homologies, functions and diseases. J. Chem. Neuroanat. 74, 28–46 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Procyk, E. et al. Midcingulate motor map and feedback detection: converging data from humans and monkeys. Cereb. Cortex 26, 467–476 (2016).

    PubMed  Google Scholar 

  10. 10

    Petersen, S.E. & Posner, M.I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Botvinick, M.M. & Cohen, J.D. The computational and neural basis of cognitive control: charted territory and new frontiers. Cogn. Sci. 38, 1249–1285 (2014).

    PubMed  Google Scholar 

  12. 12

    Stuss, D.T. & Alexander, M.P. Is there a dysexecutive syndrome? Phil. Trans. R. Soc. Lond. B 362, 901–915 (2007).

    Google Scholar 

  13. 13

    Wallis, J.D. & Kennerley, S.W. Contrasting reward signals in the orbitofrontal cortex and anterior cingulate cortex. Ann. NY Acad. Sci. 1239, 33–42 (2011).

    PubMed  Google Scholar 

  14. 14

    Ullsperger, M., Danielmeier, C. & Jocham, G. Neurophysiology of performance monitoring and adaptive behavior. Physiol. Rev. 94, 35–79 (2014).

    PubMed  Google Scholar 

  15. 15

    Cavanagh, J.F. & Frank, M.J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18, 414–421 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Cohen, J.D., Dunbar, K. & McClelland, J.L. On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychol. Rev. 97, 332–361 (1990).

    CAS  Google Scholar 

  17. 17

    Botvinick, M. & Braver, T. Motivation and cognitive control: from behavior to neural mechanism. Annu. Rev. Psychol. 66, 83–113 (2015).

    PubMed  Google Scholar 

  18. 18

    Westbrook, A. & Braver, T.S. Cognitive effort: a neuroeconomic approach. Cogn. Affect. Behav. Neurosci. 15, 395–415 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. 19

    Hare, T.A., Schultz, W., Camerer, C.F., O'Doherty, J.P. & Rangel, A. Transformation of stimulus value signals into motor commands during simple choice. Proc. Natl. Acad. Sci. USA 108, 18120–18125 (2011).

    CAS  Google Scholar 

  20. 20

    Hillman, K.L. & Bilkey, D.K. Neurons in the rat anterior cingulate cortex dynamically encode cost-benefit in a spatial decision-making task. J. Neurosci. 30, 7705–7713 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Venkatraman, V. & Huettel, S.A. Strategic control in decision-making under uncertainty. Eur. J. Neurosci. 35, 1075–1082 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Shen, C. et al. Anterior cingulate cortex cells identify process-specific errors of attentional control prior to transient prefrontal-cingulate inhibition. Cereb. Cortex 25, 2213–2228 (2015).

    PubMed  Google Scholar 

  23. 23

    Ito, S., Stuphorn, V., Brown, J.W. & Schall, J.D. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302, 120–122 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Nakamura, K., Roesch, M.R. & Olson, C.R. Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. J. Neurophysiol. 93, 884–908 (2005).

    PubMed  Google Scholar 

  25. 25

    Narayanan, N.S., Cavanagh, J.F., Frank, M.J. & Laubach, M. Common medial frontal mechanisms of adaptive control in humans and rodents. Nat. Neurosci. 16, 1888–1895 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Phillips, J.M. & Everling, S. Event-related potentials associated with performance monitoring in non-human primates. Neuroimage 97, 308–320 (2014).

    PubMed  Google Scholar 

  27. 27

    Warren, C.M., Hyman, J.M., Seamans, J.K. & Holroyd, C.B. Feedback-related negativity observed in rodent anterior cingulate cortex. J. Physiol. Paris 109, 87–94 (2015).

    PubMed  Google Scholar 

  28. 28

    Amiez, C., Sallet, J., Procyk, E. & Petrides, M. Modulation of feedback related activity in the rostral anterior cingulate cortex during trial and error exploration. Neuroimage 63, 1078–1090 (2012).

    PubMed  Google Scholar 

  29. 29

    Quilodran, R., Rothé, M. & Procyk, E. Behavioral shifts and action valuation in the anterior cingulate cortex. Neuron 57, 314–325 (2008).

    CAS  Google Scholar 

  30. 30

    Ebitz, R.B. & Platt, M.L. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal. Neuron 85, 628–640 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Sheth, S.A. et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488, 218–221 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Michelet, T. et al. Electrophysiological correlates of a versatile executive control system in the monkey anterior cingulate cortex. Cereb. Cortex 26, 1684–1697 (2016).

    PubMed  Google Scholar 

  33. 33

    Oehrn, C.R. et al. Neural communication patterns underlying conflict detection, resolution, and adaptation. J. Neurosci. 34, 10438–10452 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Tang, H. et al. Cascade of neural processing orchestrates cognitive control in human frontal cortex. eLife 5, 4671 (2016).

    Google Scholar 

  35. 35

    McGuire, J.T., Nassar, M.R., Gold, J.I. & Kable, J.W. Functionally dissociable influences on learning rate in a dynamic environment. Neuron 84, 870–881 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    O'Reilly, J.X. et al. Dissociable effects of surprise and model update in parietal and anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 110, E3660–E3669 (2013).

    CAS  Google Scholar 

  37. 37

    Kouneiher, F., Charron, S. & Koechlin, E. Motivation and cognitive control in the human prefrontal cortex. Nat. Neurosci. 12, 939–945 (2009).

    CAS  PubMed  Google Scholar 

  38. 38

    Kaping, D., Vinck, M., Hutchison, R.M., Everling, S. & Womelsdorf, T. Specific contributions of ventromedial, anterior cingulate, and lateral prefrontal cortex for attentional selection and stimulus valuation. PLoS Biol. 9, e1001224 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Cavanagh, J.F. & Shackman, A.J. Frontal midline theta reflects anxiety and cognitive control: meta-analytic evidence. J. Physiol. Paris 109, 3–15 (2015).

    PubMed  Google Scholar 

  40. 40

    Mulder, M.J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W. & Forstmann, B.U. Bias in the brain: a diffusion model analysis of prior probability and potential payoff. J. Neurosci. 32, 2335–2343 (2012).

    CAS  Article  Google Scholar 

  41. 41

    Payzan-LeNestour, E., Dunne, S., Bossaerts, P. & O'Doherty, J.P. The neural representation of unexpected uncertainty during value-based decision making. Neuron 79, 191–201 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Ma, L., Hyman, J.M., Phillips, A.G. & Seamans, J.K. Tracking progress toward a goal in corticostriatal ensembles. J. Neurosci. 34, 2244–2253 (2014).

    CAS  PubMed  Google Scholar 

  43. 43

    Womelsdorf, T., Johnston, K., Vinck, M. & Everling, S. Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proc. Natl. Acad. Sci. USA 107, 5248–5253 (2010).

    CAS  PubMed  Google Scholar 

  44. 44

    Johnston, K., Levin, H.M., Koval, M.J. & Everling, S. Top-down control-signal dynamics in anterior cingulate and prefrontal cortex neurons following task switching. Neuron 53, 453–462 (2007).

    CAS  PubMed  Google Scholar 

  45. 45

    Metzler-Baddeley, C. et al. Cingulum microstructure predicts cognitive control in older age and mild cognitive impairment. J. Neurosci. 32, 17612–17619 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    de Wit, S. et al. Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-directed action control. J. Neurosci. 32, 12066–12075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Hochman, E.Y., Wang, S., Milner, T.E. & Fellows, L.K. Double dissociation of error inhibition and correction deficits after basal ganglia or dorsomedial frontal damage in humans. Neuropsychologia 69, 130–139 (2015).

    PubMed  Google Scholar 

  48. 48

    Newman, L.A., Creer, D.J. & McGaughy, J.A. Cognitive control and the anterior cingulate cortex: how conflicting stimuli affect attentional control in the rat. J. Physiol. Paris 109, 95–103 (2015).

    PubMed  Google Scholar 

  49. 49

    Kennerley, S.W., Walton, M.E., Behrens, T.E.J., Buckley, M.J. & Rushworth, M.F.S. Optimal decision making and the anterior cingulate cortex. Nat. Neurosci. 9, 940–947 (2006).

    CAS  PubMed  Google Scholar 

  50. 50

    Chudasama, Y. et al. The role of the anterior cingulate cortex in choices based on reward value and reward contingency. Cereb. Cortex 23, 2884–2898 (2013).

    PubMed  Google Scholar 

  51. 51

    Gläscher, J. et al. Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proc. Natl. Acad. Sci. USA 109, 14681–14686 (2012).

    PubMed  Google Scholar 

  52. 52

    Gaymard, B. et al. Effects of anterior cingulate cortex lesions on ocular saccades in humans. Exp. Brain Res. 120, 173–183 (1998).

    CAS  PubMed  Google Scholar 

  53. 53

    Phillips, J.M., Johnston, K. & Everling, S. Effects of anterior cingulate microstimulation on pro- and antisaccades in nonhuman primates. J. Cogn. Neurosci. 23, 481–490 (2011).

    PubMed  Google Scholar 

  54. 54

    Reinhart, R.M.G. & Woodman, G.F. Causal control of medial-frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning. J. Neurosci. 34, 4214–4227 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Reinhart, R.M.G., Zhu, J., Park, S. & Woodman, G.F. Synchronizing theta oscillations with direct-current stimulation strengthens adaptive control in the human brain. Proc. Natl. Acad. Sci. USA 112, 9448–9453 (2015).

    CAS  PubMed  Google Scholar 

  56. 56

    Fellows, L.K. & Farah, M.J. Is anterior cingulate cortex necessary for cognitive control? Brain 128, 788–796 (2005).

    PubMed  Google Scholar 

  57. 57

    Tolomeo, S. et al. A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control. Brain 139, 1844–1854 (2016).

    PubMed  Google Scholar 

  58. 58

    McGuire, J.T. & Botvinick, M.M. Prefrontal cortex, cognitive control, and the registration of decision costs. Proc. Natl. Acad. Sci. USA 107, 7922–7926 (2010).

    CAS  PubMed  Google Scholar 

  59. 59

    Magno, E., Foxe, J.J., Molholm, S., Robertson, I.H. & Garavan, H. The anterior cingulate and error avoidance. J. Neurosci. 26, 4769–4773 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Spunt, R.P., Lieberman, M.D., Cohen, J.R. & Eisenberger, N.I. The phenomenology of error processing: the dorsal ACC response to stop-signal errors tracks reports of negative affect. J. Cogn. Neurosci. 24, 1753–1765 (2012).

    PubMed  Google Scholar 

  61. 61

    Botvinick, M.M., Huffstetler, S. & McGuire, J.T. Effort discounting in human nucleus accumbens. Cogn. Affect. Behav. Neurosci. 9, 16–27 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. 62

    Cavanagh, J.F., Masters, S.E., Bath, K. & Frank, M.J. Conflict acts as an implicit cost in reinforcement learning. Nat. Commun. 5, 5394 (2014).

    CAS  PubMed  Google Scholar 

  63. 63

    Hosking, J.G., Cocker, P.J. & Winstanley, C.A. Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost-benefit decision-making task of cognitive effort 39, 1558–1567 (2014).

  64. 64

    Parvizi, J., Rangarajan, V., Shirer, W.R., Desai, N. & Greicius, M.D. The will to persevere induced by electrical stimulation of the human cingulate gyrus. Neuron 80, 1359–1367 (2013).

    CAS  PubMed  Google Scholar 

  65. 65

    Kolling, N., Behrens, T.E.J., Mars, R.B. & Rushworth, M.F.S. Neural mechanisms of foraging. Science 336, 95–98 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Charnov, E.L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136 (1976).

    CAS  Google Scholar 

  67. 67

    Shenhav, A., Straccia, M.A., Cohen, J.D. & Botvinick, M.M. Anterior cingulate engagement in a foraging context reflects choice difficulty, not foraging value. Nat. Neurosci. 17, 1249–1254 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Shenhav, A., Straccia, M.A., Botvinick, M.M. & Cohen, J.D. Dorsal anterior cingulate and ventromedial prefrontal cortex have inverse roles in both foraging and economic choice. Cogn. Affect. Behav. Neurosci. http://dx.doi.org/10.3758/s13415-016-0458-8 (2016).

  69. 69

    Schlund, M.W. et al. The tipping point: value differences and parallel dorsal-ventral frontal circuits gating human approach-avoidance behavior. Neuroimage 136, 94–105 (2016).

    PubMed  Google Scholar 

  70. 70

    Kolling, N., Behrens, T., Wittmann, M.K. & Rushworth, M. Multiple signals in anterior cingulate cortex. Curr. Opin. Neurobiol. 37, 36–43 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Schall, J.D. & Emeric, E.E. Conflict in cingulate cortex function between humans and macaque monkeys: more apparent than real. Brain Behav. Evol. 75, 237–238 (2010).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Alexander, W.H. & Brown, J.W. Hierarchical error representation: a computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Comput. 27, 2354–2410 (2015).

    PubMed  Google Scholar 

  73. 73

    Westbrook, A. & Braver, T.S. Dopamine does double duty in motivating cognitive effort. Neuron 89, 695–710 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Musslick, S., Shenhav, A., Botvinick, M.M. & Cohen, J.D. A computational model of control allocation based on the expected value of control. in The 2nd Multidisciplinary Conference on Reinforcement Learning and Decision Making http://rldm.org/wp-content/uploads/2015/06/RLDM15AbstractsBooklet.pdf (2015).

  75. 75

    Manohar, S.G. et al. Reward pays the cost of noise reduction in motor and cognitive control. Curr. Biol. 25, 1707–1716 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Cavanagh for his feedback on an earlier draft of the manuscript. This work was supported by the C.V. Starr Foundation (A.S.) and the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amitai Shenhav.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shenhav, A., Cohen, J. & Botvinick, M. Dorsal anterior cingulate cortex and the value of control. Nat Neurosci 19, 1286–1291 (2016). https://doi.org/10.1038/nn.4384

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing