Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Evolving insights into RNA modifications and their functional diversity in the brain

Abstract

In this Perspective, we expand the notion of temporal regulation of RNA in the brain and propose that the qualitative nature of RNA and its metabolism, together with RNA abundance, are essential for the molecular mechanisms underlying experience-dependent plasticity. We discuss emerging concepts in the newly burgeoning field of epitranscriptomics, which are predicted to be heavily involved in cognitive function. These include activity-induced RNA modifications, RNA editing, dynamic changes in the secondary structure of RNA, and RNA localization. Each is described with an emphasis on its role in regulating the function of both protein-coding genes, as well as various noncoding regulatory RNAs, and how each might influence learning and memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In different local environments of the neuron, epitranscriptomic mechanisms can be employed independently and bidirectionally to regulate the qualitative state of RNA and effect experience-dependent changes in neuronal function in the brain.
Figure 2: Projected mechanisms that can control the life of a single RNA gene, perhaps at a single-molecule level.

Similar content being viewed by others

References

  1. Alberini, C.M. & Kandel, E.R. The regulation of transcription in memory consolidation. Cold Spring Harb. Perspect. Biol. 7, a021741 (2014).

    PubMed  Google Scholar 

  2. McGaugh, J.L. Memory–a century of consolidation. Science 287, 248–251 (2000).

    CAS  PubMed  Google Scholar 

  3. Sweatt, J.D. Neural plasticity & behavior–sixty years of conceptual advances. J. Neurochem. 2016, 14 (2016).

    Google Scholar 

  4. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vogel, C. & Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    PubMed  Google Scholar 

  7. Cheng, Z. et al. Differential dynamics of the mammalian mRNA and protein expression response to misfolding stress. Mol. Syst. Biol. 12, 855 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. Jovanovic, M. et al. Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens. Science 347, 1259038 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Li, J.J. et al. System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ https://peerj.com/articles/270/ (2014).

  10. Baker-Andresen, D., Ratnu, V.S. & Bredy, T.W. Dynamic DNA methylation: a prime candidate for genomic metaplasticity and behavioral adaptation. Trends Neurosci. 36, 3–13 (2013).

    CAS  PubMed  Google Scholar 

  11. Lopez-Atalaya, J.P. & Barco, A. Can changes in histone acetylation contribute to memory formation? Trends Genet. 12, 529–539 (2014).

    Google Scholar 

  12. Fu, Y., Dominissini, D., Rechavi, G. & He, C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet. 15, 293–306 (2014).

    CAS  PubMed  Google Scholar 

  13. Dominissini, D. et al. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441–446 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Carlile, T.M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, N. et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Behm, M. & Öhman, M. RNA editing: a contributor to neuronal dynamics in the mammalian brain. Trends Genet. 32, 165–175 (2016).

    CAS  PubMed  Google Scholar 

  17. Liu, N. & Pan, T. N6-methyladenosine–encoded epitranscriptomics. Nat. Struct. Mol. Biol. 23, 98–102 (2016).

    CAS  PubMed  Google Scholar 

  18. Machnicka, M.A. et al. MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res. 41, D262–D267 (2013).

    CAS  PubMed  Google Scholar 

  19. Saletore, Y. et al. The birth of the epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 13, 175 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, K. et al. Structural and functional characterization of the proteins responsible for N6-methyladenosine modification and recognition. Curr. Protein Pept. Sci. (2015).

  21. Spitale, R.C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou, J. et al. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526, 591–594 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Frye, M., Jaffrey, S.R., & Pan, T., Rechavi G. & Suzuki, T. RNA modifications: what have we learned and where are we headed? Nat. Rev. Genet. 6, 365–372 (2016).

    Google Scholar 

  24. Roundtree, I.A. & He, C. RNA epigenetics--chemical messages for posttranscriptional gene regulation. Curr. Opin. Chem. Biol. 30, 46–51 (2016).

    CAS  PubMed  Google Scholar 

  25. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    CAS  PubMed  Google Scholar 

  26. Meyer, K.D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Meyer, K.D. & Jaffrey, S.R. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol. 15, 313–326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Widagdo, J. et al. Experience-dependent accumulation of N6-methyladenosine in the prefrontal cortex is associated with memory processes in mice. J. Neurosci. 36, 6771–6777 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hess, M.E. et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat. Neurosci. 16, 1042–1048 (2013).

    CAS  PubMed  Google Scholar 

  30. Alarcón, C.R., Lee, H., Goodarzi, H., Halberg, N. & Tavazoie, S.F. N6-methyladenosine marks primary microRNAs for processing. Nature 519, 482–485 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Wang, X. et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Siciliano, V. et al. MiRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat. Commun. 4, 2364 (2013).

    PubMed  Google Scholar 

  33. Ule, J., Jensen, K., Mele, A. & Darnell, R.B. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37, 376–386 (2005).

    CAS  PubMed  Google Scholar 

  34. Ofengand, J. Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett. 514, 17–25 (2002).

    CAS  PubMed  Google Scholar 

  35. Roovers, M. et al. Formation of the conserved pseudouridine at position 55 in archaeal tRNA. Nucleic Acids Res. 34, 4293–4301 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, X. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 8, 592–597 (2015).

    Google Scholar 

  37. Wu, G., Huang, C. & Yu, Y.T. Pseudouridine in mRNA: Incorporation, Detection, and Recoding. Methods Enzymol. 560, 187–217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Preumont, A., Snoussi, K., Stroobant, V., Collet, J.F. & Van Schaftingen, E. Molecular identification of pseudouridine-metabolizing enzymes. J. Biol. Chem. 283, 25238–25246 (2008).

    CAS  PubMed  Google Scholar 

  39. Charette, M. & Gray, M.W. Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49, 341–351 (2000).

    CAS  PubMed  Google Scholar 

  40. Neumann, J.M., Bernassau, J.M., Guéron, M. & Tran-Dinh, S. Comparative conformations of uridine and pseudouridine and their derivatives. Eur. J. Biochem. 108, 457–463 (1980).

    CAS  PubMed  Google Scholar 

  41. Arnez, J.G. & Steitz, T.A. Crystal structure of unmodified tRNA(Gln) complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structure. Biochemistry 33, 7560–7567 (1994).

    CAS  PubMed  Google Scholar 

  42. Davis, D.R. Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res. 23, 5020–5026 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu, Y.T. & Meier, U.T. RNA-guided isomerization of uridine to pseudouridine–pseudouridylation. RNA Biol. 11, 1483–1494 (2014).

    PubMed  Google Scholar 

  44. Ge, J. & Yu, Y.T. RNA pseudouridylation: new insights into an old modification. Trends Biochem. Sci. 38, 210–218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Garcia, G.A. & Kittendorf, J.D. Transglycosylation: a mechanism for RNA modification (and editing?). Bioorg. Chem. 33, 229–251 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, J.B. & Church, G.M. Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nat. Neurosci. 16, 1518–1522 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, D.D. et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 14, 1719–1725 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramaswami, G. et al. Accurate identification of human Alu and non-Alu RNA editing sites. Nat. Methods 9, 579–581 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bazak, L. et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 24, 365–376 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Barry, G. & Mattick, J.S. The role of regulatory RNA in cognitive evolution. Trends Cogn. Sci. 10, 497–503 (2012).

    Google Scholar 

  51. Paupard, M.-C., O'Connell, M.A., Gerber, A.P. & Zukin, R.S. Patterns of developmental expression of the RNA editing enzyme rADAR2. Neuroscience 95, 869–879 (2000).

    CAS  Google Scholar 

  52. Sansam, C.L., Wells, K.S. & Emeson, R.B. Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc. Natl. Acad. Sci. USA 100, 14018–14023 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cattenoz, P.B., Taft, R.J., Westhof, E. & Mattick, J.S. Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage. RNA 19, 257–270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Franchini, D.M. et al. Processive DNA demethylation via DNA deaminase-induced lesion resolution. PLoS One 9, e97754 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Wan, Y., Kertesz, M., Spitale, R.C., Segal, E. & Chang, H.Y. Understanding the transcriptome through RNA structure. Nat. Rev. Genet. 12, 641–655 (2011).

    CAS  PubMed  Google Scholar 

  56. Mortimer, S.A., Kidwell, M.A. & Doudna, J.A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet. 15, 469–479 (2014).

    CAS  PubMed  Google Scholar 

  57. Bernard, D. et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 29, 3082–3093 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, B. et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2, 111–123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Barry, G. et al. The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol. Psychiatry 19, 486–494 (2014).

    CAS  PubMed  Google Scholar 

  60. Spadaro, P.A. et al. Long noncoding RNA-directed epigenetic regulation of gene expression is associated with anxiety-like behavior in mice. Biol. Psychiatry 78, 848–859 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Helm, M. Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic Acids Res. 34, 721–733 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fukuchi, M. & Tsuda, M. Involvement of the 3′-untranslated region of the brain-derived neurotrophic factor gene in activity-dependent mRNA stabilization. J. Neurochem. 115, 1222–1233 (2010).

    CAS  PubMed  Google Scholar 

  63. Subramanian, M. et al. G-quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO Rep. 12, 697–704 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kar, A. et al. RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5′ splice site. Mol. Cell. Biol. 31, 1812–1821 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Koeris, M., Funke, L., Shrestha, J., Rich, A. & Maas, S. Modulation of ADAR1 editing activity by Z-RNA in vitro. Nucleic Acids Res. 33, 5362–5370 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).

    CAS  PubMed  Google Scholar 

  67. Pop, C. et al. Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol. Syst. Biol. 10, 770 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J.S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).

    CAS  PubMed  Google Scholar 

  69. Kubota, M., Tran, C. & Spitale, R.C. Progress and challenges for chemical probing of RNA structure inside living cells. Nat. Chem. Biol. 11, 933–941 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lipshitz, H.D. & Smibert, C.A. Mechanisms of RNA localization and translational regulation. Curr. Opin. Genet. Dev. 10, 476–488 (2000).

    CAS  PubMed  Google Scholar 

  71. Willingham, A.T. et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309, 1570–1573 (2005).

    CAS  PubMed  Google Scholar 

  72. Gong, C. & Maquat, L.E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470, 284–288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ingolia, N.T. Genome-wide translational profiling by ribosome footprinting. Methods Enzymol. 470, 119–142 (2010).

    CAS  PubMed  Google Scholar 

  74. Jan, C.H., Williams, C.C. & Weissman, J.S. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346, 1257521 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Williams, C.C., Jan, C.H. & Weissman, J.S. Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346, 748–751 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Dominguez, A.A., Lim, W.A. & Qi, L.S. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17, 5–15 (2016).

    CAS  PubMed  Google Scholar 

  77. Nelles, D.A. et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165, 488–496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Abudayyeh, O.O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science http://dx.doi.org/10.1126/science.aaf5573 (2016).

  79. Mili, S. & Steitz, J.A. Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10, 1692–1694 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Riley, K.J., Yario, T.A. & Steitz, J.A. Association of Argonaute proteins and microRNAs can occur after cell lysis. RNA 18, 1581–1585 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hung, V. et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol. Cell 55, 332–341 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, S.Y. et al. APEX fingerprinting reveals the subcellular localization of proteins of interest. Cell Rep. 15, 1837–1847 (2016).

    CAS  PubMed  Google Scholar 

  83. Lake, B.B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Morisaki, T. et al. Real-time quantification of single RNA translation dynamics in living cells. Science 352, 1425–1429 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Tweedale for editing the manuscript and gratefully acknowledge grant support from the NIH (5R01MH105398-T.W.B.), NIH (1R01MH109588-01-T.W.B. and R.C.S.), NIGMS (1DP2GM119164-01-R.C.S.) and the NHMRC (APP1033127-T.W.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert C Spitale or Timothy W Bredy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nainar, S., Marshall, P., Tyler, C. et al. Evolving insights into RNA modifications and their functional diversity in the brain. Nat Neurosci 19, 1292–1298 (2016). https://doi.org/10.1038/nn.4378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing