Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Improving data quality in neuronal population recordings

Abstract

Understanding how the brain operates requires understanding how large sets of neurons function together. Modern recording technology makes it possible to simultaneously record the activity of hundreds of neurons, and technological developments will soon allow recording of thousands or tens of thousands. As with all experimental techniques, these methods are subject to confounds that complicate the interpretation of such recordings, and could lead to erroneous scientific conclusions. Here we discuss methods for assessing and improving the quality of data from these techniques and outline likely future directions in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spike sorting is required to draw valid conclusions in extracellular electrophysiology.
Figure 2: Quantitative measures of unit isolation in extracellular electrophysiology.
Figure 3: Subtracting neuropil contamination from raw fluorescence time courses.
Figure 4: Probabilistic estimation of spike times from calcium signals.

Similar content being viewed by others

References

  1. Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Gold, C., Henze, D.A., Koch, C. & Buzsáki, G. On the origin of the extracellular action potential waveform: a modeling study. J. Neurophysiol. 95, 3113–3128 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Quiroga, R.Q. Spike sorting. Curr. Biol. 22, R45–R46 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Berényi, A. et al. Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. J. Neurophysiol. 111, 1132–1149 (2014).

    Article  PubMed  Google Scholar 

  5. Lewicki, M.S. A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9, R53–R78 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Rey, H.G., Pedreira, C. & Quian Quiroga, R. Past, present and future of spike sorting techniques. Brain Res. Bull. 119, Pt B, 106–117 (2015).

    Article  Google Scholar 

  7. Einevoll, G.T., Franke, F., Hagen, E., Pouzat, C. & Harris, K.D. Towards reliable spike-train recordings from thousands of neurons with multielectrodes. Curr. Opin. Neurobiol. 22, 11–17 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Henze, D.A. et al. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84, 390–400 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Rey, H.G. et al. Single-cell recordings in the human medial temporal lobe. J. Anat. 227, 394–408 (2015).

    Article  PubMed  Google Scholar 

  10. Quiroga, R.Q. Concept cells: the building blocks of declarative memory functions. Nat. Rev. Neurosci. 13, 587–597 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Quiroga, R.Q., Reddy, L., Koch, C. & Fried, I. Decoding visual inputs from multiple neurons in the human temporal lobe. J. Neurophysiol. 98, 1997–2007 (2007).

    Article  PubMed  Google Scholar 

  12. Hill, D.N., Mehta, S.B. & Kleinfeld, D. Quality metrics to accompany spike sorting of extracellular signals. J. Neurosci. 31, 8699–8705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ludwig, K.A., Uram, J.D., Yang, J., Martin, D.C. & Kipke, D.R. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural Eng. 3, 59–70 (2006).

    Article  PubMed  Google Scholar 

  14. Gerstein, G.L. & Clarke, W.A. Simultaneous studies of firing patterns in several neurons. Science 143, 1325–1327 (1964).

    Article  PubMed  Google Scholar 

  15. Robinson, D.A. The electrical properties of metal microelectrodes. Proc. IEEE 56, 1065–1071 (1968).

    Article  CAS  Google Scholar 

  16. Camuñas-Mesa, L.A. & Quiroga, R.Q. A detailed and fast model of extracellular recordings. Neural Comput. 25, 1191–1212 (2013).

    Article  PubMed  Google Scholar 

  17. Pedreira, C., Martinez, J., Ison, M.J. & Quian Quiroga, R. How many neurons can we see with current spike sorting algorithms? J. Neurosci. Methods 211, 58–65 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Quian Quiroga, R. & Panzeri, S. Principles of Neural Coding (Taylor & Francis/CRC Press, 2013).

  19. Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown, E.N., Kass, R.E. & Mitra, P.P. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7, 456–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Quian Quiroga, R. & Panzeri, S. Extracting information from neuronal populations: information theory and decoding approaches. Nat. Rev. Neurosci. 10, 173–185 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Harris, K.D. Neural signatures of cell assembly organization. Nat. Rev. Neurosci. 6, 399–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Spira, M.E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83–94 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Lambacher, A. et al. Identifying firing mammalian neurons in networks with high-resolution multitransistor array (MTA). Appl. Phys. A. 102, 1–11 (2011).

    Article  CAS  Google Scholar 

  25. Frey, U., Egert, U., Heer, F., Hafizovic, S. & Hierlemann, A. Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens. Bioelectron. 24, 2191–2198 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Litke, A. et al. What does the eye tell the brain? Development of a system fo the large-scale recording of retinal output activity. IEEE Trans. Nucl. Sci. 51, 1434–1440 (2004).

    Article  Google Scholar 

  27. Lopez, C.M. et al. A 966-electrode neural probe with 384 configurable channels in 0.13 μm SOI CMOS. IEEE Int. Solid State Circuits Conf. 392–393 (2016).

  28. Nicolelis, M.A., Ghazanfar, A.A., Faggin, B.M., Votaw, S. & Oliveira, L.M. Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron 18, 529–537 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Hochberg, L.R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. McNaughton, B.L., O'Keefe, J. & Barnes, C.A. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J. Neurosci. Methods 8, 391–397 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. Gray, C.M., Maldonado, P.E., Wilson, M. & McNaughton, B. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J. Neurosci. Methods 63, 43–54 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Blanche, T.J., Spacek, M.A., Hetke, J.F. & Swindale, N.V. Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. J. Neurophysiol. 93, 2987–3000 (2005).

    Article  PubMed  Google Scholar 

  33. Drake, K.L., Wise, K.D., Farraye, J., Anderson, D.J. & BeMent, S.L. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng. 35, 719–732 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Bai, Q. & Wise, K.D. Single-unit neural recording with active microelectrode arrays. IEEE Trans. Biomed. Eng. 48, 911–920 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Csicsvari, J. et al. Massively parallel recording of unit and local field potentials with silicon-based electrodes. J. Neurophysiol. 90, 1314–1323 (2003).

    Article  PubMed  Google Scholar 

  36. Harris, K.D., Henze, D.A., Csicsvari, J., Hirase, H. & Buzsáki, G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84, 401–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Rossant, C. et al. Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19, 634–641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Briggman, K.L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Dhawale, A.K. et al. Automated long-term recording and analysis of neural activity in behaving animals. bioRxiv http://dx.doi.org/10.1101/033266 (2015).

  40. Anastassiou, C.A., Perin, R., Buzsáki, G., Markram, H. & Koch, C. Cell-type- and activity-dependent extracellular correlates of intracellular spiking. J. Neurophysiol. 114, 608–623 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wehr, M., Pezaris, J. & Sahani, M. Simultaneous paired intracellular and tetrode recordings for spike sorting algorithms. Neurocomputing 26, 1061–1068 (1999).

    Article  Google Scholar 

  42. Delescluse, M. & Pouzat, C. Efficient spike-sorting of multi-state neurons using inter-spike intervals information. J. Neurosci. Methods 150, 16–29 (2006).

    Article  PubMed  Google Scholar 

  43. Neto, J.P. et al. Validating silicon polytrodes with paired juxtacellular recordings: method and dataset. bioRxiv http://dx.doi.org/10.1101/037937 (2016).

  44. Lindén, H. et al. LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front. Neuroinform. 7, 41 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Menne, K., Folkers, A., Malina, T., Maex, R. & Hofmann, U. Test of spike-sorting algorithms on the basis of simulated network data. Neurocomputing 44–46, 1119–1126 (2002).

    Article  Google Scholar 

  46. Petersen, K.E. & Einevoll, G.T. Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophys. J. 94, 784–802 (2008).

    Article  CAS  Google Scholar 

  47. Martinez, J., Pedreira, C., Ison, M.J. & Quian Quiroga, R. Realistic simulation of extracellular recordings. J. Neurosci. Methods 184, 285–293 (2009).

    Article  PubMed  Google Scholar 

  48. Navajas, J. et al. Minimum requirements for accurate and efficient real-time on-chip spike sorting. J. Neurosci. Methods 230, 51–64 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barnett, A.H., Magland, J.F. & Greengard, L.F. Validation of neural spike sorting algorithms without ground-truth information. J. Neurosci. Methods 264, 65–77 (2016).

    Article  PubMed  Google Scholar 

  50. Franke, F., Natora, M., Boucsein, C., Munk, M.H. & Obermayer, K. An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes. J. Comput. Neurosci. 29, 127–148 (2010).

    Article  PubMed  Google Scholar 

  51. Pillow, J.W., Shlens, J., Chichilnisky, E.J. & Simoncelli, E.P. A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings. PLoS One 8, e62123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ekanadham, C., Tranchina, D. & Simoncelli, E.P. A unified framework and method for automatic neural spike identification. J. Neurosci. Methods 222, 47–55 (2014).

    Article  PubMed  Google Scholar 

  53. Pachitariu, M., Steinmetz, N.A., Kadir, S.N., Carandini, M. & Harris, K.D. Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels. bioRxiv http://dx.doi.org/10.1101/061481 (2016).

  54. Schmitzer-Torbert, N., Jackson, J., Henze, D., Harris, K. & Redish, A.D. Quantitative measures of cluster quality for use in extracellular recordings. Neuroscience 131, 1–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Pouzat, C., Mazor, O. & Laurent, G. Using noise signature to optimize spike-sorting and to assess neuronal classification quality. J. Neurosci. Methods 122, 43–57 (2002).

    Article  PubMed  Google Scholar 

  56. Harris, K.D., Hirase, H., Leinekugel, X., Henze, D.A. & Buzsáki, G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141–149 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Fee, M.S., Mitra, P.P. & Kleinfeld, D. Variability of extracellular spike waveforms of cortical neurons. J. Neurophysiol. 76, 3823–3833 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Quirk, M.C. & Wilson, M.A. Interaction between spike waveform classification and temporal sequence detection. J. Neurosci. Methods 94, 41–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Cohen, M.R. & Kohn, A. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811–819 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pazienti, A. & Grün, S. Robustness of the significance of spike synchrony with respect to sorting errors. J. Comput. Neurosci. 21, 329–342 (2006).

    Article  PubMed  Google Scholar 

  61. Ventura, V. & Gerkin, R.C. Accurately estimating neuronal correlation requires a new spike-sorting paradigm. Proc. Natl. Acad. Sci. USA 109, 7230–7235 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ganguly, K., Dimitrov, D.F., Wallis, J.D. & Carmena, J.M. Reversible large-scale modification of cortical networks during neuroprosthetic control. Nat. Neurosci. 14, 662–667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fraser, G.W., Chase, S.M., Whitford, A. & Schwartz, A.B. Control of a brain-computer interface without spike sorting. J. Neural Eng. 6, 055004 (2009).

    Article  PubMed  Google Scholar 

  64. Redish, A.D. et al. Independence of firing correlates of anatomically proximate hippocampal pyramidal cells. J. Neurosci. 21, RC134 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shoham, S., O'Connor, D.H. & Segev, R. How silent is the brain: is there a “dark matter” problem in neuroscience? J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192, 777–784 (2006).

    Article  PubMed  Google Scholar 

  66. Moffitt, M.A. & McIntyre, C.C. Model-based analysis of cortical recording with silicon microelectrodes. Clin. Neurophysiol. 116, 2240–2250 (2005).

    Article  PubMed  Google Scholar 

  67. Claverol-Tinture, E. & Nadasdy, Z. Intersection of microwire electrodes with proximal CA1 stratum-pyramidale neurons at insertion for multiunit recordings predicted by a 3-D computer model. IEEE Trans. Biomed. Eng. 51, 2211–2216 (2004).

    Article  PubMed  Google Scholar 

  68. Buzsáki, G. & Mizuseki, K. The log-dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci. 15, 264–278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. de Kock, C.P., Bruno, R.M., Spors, H. & Sakmann, B. Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. J. Physiol. (Lond.) 581, 139–154 (2007).

    Article  CAS  Google Scholar 

  70. Sakata, S. & Harris, K.D. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64, 404–418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Niell, C.M. & Stryker, M.P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. O'Connor, D.H., Peron, S.P., Huber, D. & Svoboda, K. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67, 1048–1061 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Hubel, D.H. Tungsten microelectrode for recording from single units. Science 125, 549–550 (1957).

    Article  CAS  PubMed  Google Scholar 

  74. Kentros, C. et al. Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280, 2121–2126 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Okun, M., Carandini, M. & Harris, K.D. Long term recordings with immobile silicon probes in the mouse cortex. PLoS One http://dx.doi.org/10.1371/journal.pone.0151180 (2015).

  76. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Buzsáki, G. & Kandel, A. Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat. J. Neurophysiol. 79, 1587–1591 (1998).

    Article  PubMed  Google Scholar 

  78. Tolias, A.S. et al. Recording chronically from the same neurons in awake, behaving primates. J. Neurophysiol. 98, 3780–3790 (2007).

    Article  PubMed  Google Scholar 

  79. Swindale, N.V. & Spacek, M.A. Spike sorting for polytrodes: a divide and conquer approach. Front. Syst. Neurosci. 8, 6 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bar-Hillel, A., Spiro, A. & Stark, E. Spike sorting: Bayesian clustering of non-stationary data. J. Neurosci. Methods 157, 303–316 (2006).

    Article  PubMed  Google Scholar 

  81. Jackson, A. & Fetz, E.E. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates. J. Neurophysiol. 98, 3109–3118 (2007).

    Article  PubMed  Google Scholar 

  82. Fee, M.S., Mitra, P.P. & Kleinfeld, D. Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J. Neurosci. Methods 69, 175–188 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Williams, J.C., Rennaker, R.L. & Kipke, D.R. Stability of chronic multichannel neural recordings: implications for a long-term neural interface. Neurocomputing 26–27, 1069–1076 (1999).

    Article  Google Scholar 

  84. Greenberg, P.A. & Wilson, F.A. Functional stability of dorsolateral prefrontal neurons. J. Neurophysiol. 92, 1042–1055 (2004).

    Article  PubMed  Google Scholar 

  85. Ohki, K., Chung, S., Ch'ng, Y.H., Kara, P. & Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Theis, L. et al. Benchmarking spike rate inference in population calcium imaging. Neuron 90, 471–482 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rose, T., Goltstein, P.M., Portugues, R. & Griesbeck, O. Putting a finishing touch on GECIs. Front. Mol. Neurosci. 7, 88 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ghosh, K.K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Keller, P.J., Ahrens, M.B. & Freeman, J. Light-sheet imaging for systems neuroscience. Nat. Methods 12, 27–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Chen, T.W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ohki, K. et al. Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442, 925–928 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Dombeck, D.A., Harvey, C.D., Tian, L., Looger, L.L. & Tank, D.W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 1433–1440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yasuda, R. et al. Imaging calcium concentration dynamics in small neuronal compartments. Sci. STKE 2004, pl5 (2004).

    PubMed  Google Scholar 

  95. Podgorski, K. & Ranganathan, G.N. Brain heating induced by near infrared lasers during multi-photon microscopy. J.Neurophysiol. http://dx.doi.org/10.1152/jn.00275.2016 (2016).

  96. Valmianski, I. et al. Automatic identification of fluorescently labeled brain cells for rapid functional imaging. J. Neurophysiol. 104, 1803–1811 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sadovsky, A.J. et al. Heuristically optimal path scanning for high-speed multiphoton circuit imaging. J. Neurophysiol. 106, 1591–1598 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cotton, R.J., Froudarakis, E., Storer, P., Saggau, P. & Tolias, A.S. Three-dimensional mapping of microcircuit correlation structure. Front. Neural Circuits 7, 151 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hamel, E.J., Grewe, B.F., Parker, J.G. & Schnitzer, M.J. Cellular level brain imaging in behaving mammals: an engineering approach. Neuron 86, 140–159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wilt, B.A., Fitzgerald, J.E. & Schnitzer, M.J. Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing. Biophys. J. 104, 51–62 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Young, M.D., Field, J.J., Sheetz, K.E., Bartels, R.A. & Squier, J. A pragmatic guide to multiphoton microscope design. Adv. Opt. Photonics 7, 276–378 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kerr, J.N., Greenberg, D. & Helmchen, F. Imaging input and output of neocortical networks in vivo. Proc. Natl. Acad. Sci. USA 102, 14063–14068 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lecoq, J. et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging. Nat. Neurosci. 17, 1825–1829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stirman, J.N., Smith, I.T., Kudenov, M.W. & Smith, S.L. Wide field-of-view, twin-region two-photon imaging across extended cortical networks. Nat. Biotechnol. http://dx.doi.org/10.1038/nbt.3594 (2016).

  105. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Yang, W. et al. Simultaneous multi-plane imaging of neural circuits. Neuron 89, 269–284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dunn, A.K., Wallace, V.P., Coleno, M., Berns, M.W. & Tromberg, B.J. Influence of optical properties on two-photon fluorescence imaging in turbid samples. Appl. Opt. 39, 1194–1201 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Tung, C.K. et al. Effects of objective numerical apertures on achievable imaging depths in multiphoton microscopy. Microsc. Res. Tech. 65, 308–314 (2004).

    Article  PubMed  Google Scholar 

  109. Zheng, G., Ou, X., Horstmeyer, R. & Yang, C. Characterization of spatially varying aberrations for wide field-of-view microscopy. Opt. Express 21, 15131–15143 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. von Diezmann, A., Lee, M.Y., Lew, M.D. & Moerner, W.E. Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy. Optica 2, 985–993 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang, C. & Ji, N. Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics. Opt. Express 21, 27142–27154 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Barretto, R.P., Messerschmidt, B. & Schnitzer, M.J. In vivo fluorescence imaging with high-resolution microlenses. Nat. Methods 6, 511–512 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ji, N., Sato, T.R. & Betzig, E. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc. Natl. Acad. Sci. USA 109, 22–27 (2012).

    Article  PubMed  Google Scholar 

  114. Dana, H. et al. Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS One 9, e108697 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen, Q. et al. Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron 76, 297–308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Glickfeld, L.L., Andermann, M.L., Bonin, V. & Reid, R.C. Cortico-cortical projections in mouse visual cortex are functionally target specific. Nat. Neurosci. 16, 219–226 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Peron, S.P., Freeman, J., Iyer, V., Guo, C. & Svoboda, K. A cellular resolution map of barrel cortex activity during tactile behavior. Neuron 86, 783–799 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Bonin, V., Histed, M.H., Yurgenson, S. & Reid, R.C. Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J. Neurosci. 31, 18506–18521 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. & Tank, D.W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen, J.L., Pfäffli, O.A., Voigt, F.F., Margolis, D.J. & Helmchen, F. Online correction of licking-induced brain motion during two-photon imaging with a tunable lens. J. Physiol. (Lond.) 591, 4689–4698 (2013).

    Article  CAS  Google Scholar 

  121. Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dubbs, A., Guevara, J. & Yuste, R. moco: fast motion correction for calcium imaging. Front. Neuroinform. 10, 6 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Thévenaz, P., Ruttimann, U.E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    Article  PubMed  Google Scholar 

  124. Greenberg, D.S. & Kerr, J.N. Automated correction of fast motion artifacts for two-photon imaging of awake animals. J. Neurosci. Methods 176, 1–15 (2009).

    Article  PubMed  Google Scholar 

  125. Wilms, C.D. & Häusser, M. Reading out a spatiotemporal population code by imaging neighbouring parallel fibre axons in vivo. Nat. Commun. 6, 6464 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Dufour, P., Piché, M., De Koninck, Y. & McCarthy, N. Two-photon excitation fluorescence microscopy with a high depth of field using an axicon. Appl. Opt. 45, 9246–9252 (2006).

    Article  PubMed  Google Scholar 

  127. Andermann, M.L., Kerlin, A.M. & Reid, R.C. Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Front. Cell. Neurosci. 4, 3 (2010).

    PubMed  PubMed Central  Google Scholar 

  128. Laffray, S. et al. Adaptive movement compensation for in vivo imaging of fast cellular dynamics within a moving tissue. PLoS One 6, e19928 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kerlin, A.M., Andermann, M.L., Berezovskii, V.K. & Reid, R.C. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858–871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Andermann, M.L., Kerlin, A.M., Roumis, D.K., Glickfeld, L.L. & Reid, R.C. Functional specialization of mouse higher visual cortical areas. Neuron 72, 1025–1039 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Schultz, S.R., Kitamura, K., Post-Uiterweer, A., Krupic, J. & Häusser, M. Spatial pattern coding of sensory information by climbing fiber-evoked calcium signals in networks of neighboring cerebellar Purkinje cells. J. Neurosci. 29, 8005–8015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mukamel, E.A., Nimmerjahn, A. & Schnitzer, M.J. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63, 747–760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pnevmatikakis, E.A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Andilla, F.D. & Hamprecht, F.A. Sparse space-time deconvolution for calcium image analysis. Adv. Neural Inf. Process. Syst. 27, 64–72 (2014).

    Google Scholar 

  135. Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. bioRxiv http://dx.doi.org/10.1101/061507 (2016).

  136. Pachitariu, M. et al. Extracting regions of interest from biological images with convolutional sparse block coding. Adv. Neural Inf. Process. Syst. 24, 1745–1753 (2013).

    Google Scholar 

  137. Vogelstein, J.T. et al. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J. Neurophysiol. 104, 3691–3704 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yaksi, E. & Friedrich, R.W. Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nat. Methods 3, 377–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Ganmore, E., Krumin, M., Rossi, L.F., Carandini, M. & Simoncelli, E.P. Direct estimation of firing rates from calcium imaging data. arXivhttp://arxiv.org/abs/1601.00364 (2016).

  140. Harvey, C.D., Coen, P. & Tank, D.W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Smith, S.L. & Häusser, M. Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nat. Neurosci. 13, 1144–1149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Harris, K.D., Csicsvari, J., Hirase, H., Dragoi, G. & Buzsáki, G. Organization of cell assemblies in the hippocampus. Nature 424, 552–556 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Steinmetz and M. Pachitariu for comments on the manuscript. K.D.H. is supported by the Wellcome Trust (95668, 95669, 100154), EPSRC (K015141, I005102), MRC and Simons foundation (SCGB 325512). S.L.S. is supported by the Human Frontier Science Program (CDA00063/2012, RGP0027/2016), National Science Foundation (1450824), Whitehall Foundation, Klingenstein Foundation, McKnight Foundation, Simons Foundation (SCGB 325407SS) and the National Institutes of Health (R01NS091335, R01EY024294). R.Q.Q. is supported by the Human Frontiers Science Program (RGP0015/2013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenneth D Harris or Spencer L Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, K., Quiroga, R., Freeman, J. et al. Improving data quality in neuronal population recordings. Nat Neurosci 19, 1165–1174 (2016). https://doi.org/10.1038/nn.4365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing