Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Postsynaptic, not presynaptic NMDA receptors are required for spike-timing-dependent LTD induction

Abstract

Long-term depression (LTD) between cortical layer 4 spiny stellate cells and layer 2/3 pyramidal cells requires the activation of NMDA receptors (NMDARs). In young rodents, this form of LTD has been repeatedly reported to require presynaptic NMDARs for its induction. Here we show that at this synapse in the somatosensory cortex of 2- to 3-week-old rats and mice, postsynaptic, not presynaptic NMDARs are required for LTD induction. First, we find no evidence for functional NMDARs in L4 neuron axons using two-photon laser scanning microscopy and two-photon glutamate uncaging. Second, we find that genetic deletion of postsynaptic, but not presynaptic NMDARs prevents LTD induction. Finally, the pharmacology of the NMDAR requirement is consistent with a nonionic signaling mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 2PLU of MNI-glutamate and calcium influx in L4 neuronal axonal varicosities and dendritic spines.
Figure 2: Counting voltage gated calcium channels in axonal varicosities from an L4 neuron.
Figure 3: t-LTD of L4–L2/3 synapses.
Figure 4: Pharmacology of t-LTD.
Figure 5: Postsynaptic NMDARs are required for t-LTD.
Figure 6: Presynaptic NMDARs are not required for t-LTD.

Similar content being viewed by others

References

  1. Bouvier, G., Bidoret, C., Casado, M. & Paoletti, P. Presynaptic NMDA receptors: roles and rules. Neuroscience 311, 322–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Glitsch, M. & Marty, A. Presynaptic effects of NMDA in cerebellar Purkinje cells and interneurons. J. Neurosci. 19, 511–519 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Corlew, R., Wang, Y., Ghermazien, H., Erisir, A. & Philpot, B.D. Developmental switch in the contribution of presynaptic and postsynaptic NMDA receptors to long-term depression. J. Neurosci. 27, 9835–9845 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu, Y., Maureira, C., Liu, X. & McCormick, D. P/Q and N channels control baseline and spike-triggered calcium levels in neocortical axons and synaptic boutons. J. Neurosci. 30, 11858–11869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Christie, J.M., Chiu, D.N. & Jahr, C.E. Ca2+-dependent enhancement of release by subthreshold somatic depolarization. Nat. Neurosci. 14, 62–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Christie, J.M. & Jahr, C.E. Dendritic NMDA receptors activate axonal calcium channels. Neuron 60, 298–307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pugh, J.R. & Jahr, C.E. NMDA receptor agonists fail to alter release from cerebellar basket cells. J. Neurosci. 31, 16550–16555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McGuinness, L. et al. Presynaptic NMDARs in the hippocampus facilitate transmitter release at theta frequency. Neuron 68, 1109–1127 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Rossi, B. et al. Current and calcium responses to local activation of axonal NMDA receptors in developing cerebellar molecular layer interneurons. PLoS One 7, e39983 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buchanan, K.A. et al. Target-specific expression of presynaptic NMDA receptors in neocortical microcircuits. Neuron 75, 451–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Christie, J.M. & Jahr, C.E. Selective expression of ligand-gated ion channels in L5 pyramidal cell axons. J. Neurosci. 29, 11441–11450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bender, V.A., Bender, K.J., Brasier, D.J. & Feldman, D.E. Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. J. Neurosci. 26, 4166–4177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nevian, T. & Sakmann, B. Spine Ca2+ signaling in spike-timing-dependent plasticity. J. Neurosci. 26, 11001–11013 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Banerjee, A. et al. Double dissociation of spike timing-dependent potentiation and depression by subunit-preferring NMDA receptor antagonists in mouse barrel cortex. Cereb. Cortex 19, 2959–2969 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Larsen, R.S. et al. Synapse-specific control of experience-dependent plasticity by presynaptic NMDA receptors. Neuron 83, 879–893 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feldman, D.E. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 45–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Rodríguez-Moreno, A. & Paulsen, O. Spike timing-dependent long-term depression requires presynaptic NMDA receptors. Nat. Neurosci. 11, 744–745 (2008).

    Article  PubMed  Google Scholar 

  18. Rodríguez-Moreno, A. et al. Presynaptic induction and expression of timing-dependent long-term depression demonstrated by compartment-specific photorelease of a use-dependent NMDA receptor antagonist. J. Neurosci. 31, 8564–8569 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nabavi, S. et al. Metabotropic NMDA receptor function is required for NMDA receptor-dependent long-term depression. Proc. Natl. Acad. Sci. USA 110, 4027–4032 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stein, I.S., Gray, J.A. & Zito, K. Non-ionotropic NMDA receptor signaling drives activity-induced dendritic spine shrinkage. J. Neurosci. 35, 12303–12308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bloodgood, B.L. & Sabatini, B.L. Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53, 249–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Nimchinsky, E.A., Yasuda, R., Oertner, T.G. & Svoboda, K. The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines. J. Neurosci. 24, 2054–2064 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sabatini, B.L., Oertner, T.G. & Svoboda, K. The life cycle of Ca2+ ions in dendritic spines. Neuron 33, 439–452 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Sabatini, B.L. & Svoboda, K. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408, 589–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. McDonough, S.I., Swartz, K.J., Mintz, I.M., Boland, L.M. & Bean, B.P. Inhibition of calcium channels in rat central and peripheral neurons by omega-conotoxin MVIIC. J. Neurosci. 16, 2612–2623 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sheng, J. et al. Calcium-channel number critically influences synaptic strength and plasticity at the active zone. Nat. Neurosci. 15, 998–1006 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borst, J.G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Jahr, C.E. & Stevens, C.F. Calcium permeability of the N-methyl-D-aspartate receptor channel in hippocampal neurons in culture. Proc. Natl. Acad. Sci. USA 90, 11573–11577 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burnashev, N., Zhou, Z., Neher, E. & Sakmann, B. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. (Lond.) 485, 403–418 (1995).

    Article  CAS  Google Scholar 

  30. Lester, R.A., Clements, J.D., Westbrook, G.L. & Jahr, C.E. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346, 565–567 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Adesnik, H., Li, G., During, M.J., Pleasure, S.J. & Nicoll, R.A. NMDA receptors inhibit synapse unsilencing during brain development. Proc. Natl. Acad. Sci. USA 105, 5597–5602 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fukaya, M., Kato, A., Lovett, C., Tonegawa, S. & Watanabe, M. Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice. Proc. Natl. Acad. Sci. USA 100, 4855–4860 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsien, J.Z., Huerta, P.T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Casado, M., Isope, P. & Ascher, P. Involvement of presynaptic N-methyl-d-aspartate receptors in cerebellar long-term depression. Neuron 33, 123–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Park, H., Popescu, A. & Poo, M.M. Essential role of presynaptic NMDA receptors in activity-dependent BDNF secretion and corticostriatal LTP. Neuron 84, 1009–1022 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Larsen, R.S. et al. NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity. Nat. Neurosci. 14, 338–344 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sasaki, Y.F. et al. Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J. Neurophysiol. 87, 2052–2063 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Kunz, P.A., Roberts, A.C. & Philpot, B.D. Presynaptic NMDA receptor mechanisms for enhancing spontaneous neurotransmitter release. J. Neurosci. 33, 7762–7769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fiszman, M.L. et al. NMDA receptors increase the size of GABAergic terminals and enhance GABA release. J. Neurosci. 25, 2024–2031 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, P.Y., Petralia, R.S., Wang, Y.X., Wenthold, R.J. & Brenowitz, S.D. Functional NMDA receptors at axonal growth cones of young hippocampal neurons. J. Neurosci. 31, 9289–9297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Clark, B.A. & Cull-Candy, S.G. Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse. J. Neurosci. 22, 4428–4436 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vissel, B., Krupp, J.J., Heinemann, S.F. & Westbrook, G.L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat. Neurosci. 4, 587–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Krapivinsky, G. et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 40, 775–784 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Weilinger, N.L. et al. Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat. Neurosci. 19, 432–442 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Aow, J., Dore, K. & Malinow, R. Conformational signaling required for synaptic plasticity by the NMDA receptor complex. Proc. Natl. Acad. Sci. USA 112, 14711–14716 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Min, R. & Nevian, T. Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat. Neurosci. 15, 746–753 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Rothman, S. Noncompetitive N-methyl-d-aspartate antagonists affect multiple ionic currents. J. Pharmacol. Exp. Ther. 246, 137–142 (1988).

    CAS  PubMed  Google Scholar 

  49. Agmon, A. & Connors, B.W. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41, 365–379 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Chiu and W. Sun for discussions and comments on the manuscript. This work was supported by US National Institutes of Health grant NS066037 (C.E.J.).

Author information

Authors and Affiliations

Authors

Contributions

B.C.C. and C.E.J. designed the experiments and wrote the manuscript. B.C.C. conducted and analyzed the experiments.

Corresponding author

Correspondence to Craig E Jahr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carter, B., Jahr, C. Postsynaptic, not presynaptic NMDA receptors are required for spike-timing-dependent LTD induction. Nat Neurosci 19, 1218–1224 (2016). https://doi.org/10.1038/nn.4343

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4343

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing