Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Hyperkinetic disorders and loss of synaptic downscaling

Abstract

Recent clinical and preclinical studies have shown that hyperkinetic disorders such as Huntington's disease, dystonia and l-DOPA-induced dyskinesia in Parkinson's disease are all characterized by loss of the ability to reverse synaptic plasticity and an associated increase in the excitability of excitatory neuronal inputs to a range of cortical and subcortical brain areas. Moreover, these changes have been detected in humans with hyperkinetic disorders either via direct recordings from implanted deep brain electrodes or noninvasively using transcranial magnetic stimulation. Here we discuss the mechanisms underlying the loss of bidirectional plasticity and the possibility that future interventions could be devised to reverse these changes in patients with hyperkinetic movement disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alterations of striatal synaptic plasticity in three experimental models of hyperkinetic disorders.
Figure 2: Schematic representation of the common abnormalities in cAMP–PKA pathway downstream of dopamine D1 and adenosine A2A receptors in striatal spiny neurons in experimental models of hyperkinetic disorders.

Kim Caesar/Nature Publishing Group

Figure 3: Effects of TMS on motor cortex plasticity in PD with LID.
Figure 4: Effects of DBS on subcortical synaptic plasticity in dystonia and in PD with LID.
Figure 5: Hypothetical representation of the link between human plasticity and synaptic changes in in vitro models.

Kim Caesar/Nature Publishing Group

Similar content being viewed by others

References

  1. Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V. & Di Filippo, M. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat. Neurosci. 17, 1022–1030 (2014).

    CAS  PubMed  Google Scholar 

  2. Malenka, R.C. & Bear, M.F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    CAS  PubMed  Google Scholar 

  3. Marras, C. et al. Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society Task Force. Mov. Disord. 31, 436–457 (2016).

    PubMed  Google Scholar 

  4. Plotkin, J.L. & Surmeier, D.J. Corticostriatal synaptic adaptations in Huntington’s disease. Curr. Opin. Neurobiol. 33, 53–62 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zuccato, C. & Cattaneo, E. Huntington’s disease. Handb. Exp. Pharmacol. 220, 357–409 (2014).

    CAS  PubMed  Google Scholar 

  6. Quartarone, A. & Pisani, A. Abnormal plasticity in dystonia: disruption of synaptic homeostasis. Neurobiol. Dis. 42, 162–170 (2011).

    PubMed  Google Scholar 

  7. Standaert, D.G. Update on the pathology of dystonia. Neurobiol. Dis. 42, 148–151 (2011).

    PubMed  PubMed Central  Google Scholar 

  8. Calabresi, P., Di Filippo, M., Ghiglieri, V., Tambasco, N. & Picconi, B. Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol. 9, 1106–1117 (2010).

    CAS  PubMed  Google Scholar 

  9. Cenci, M.A. Presynaptic mechanisms of l-DOPA-Induced Dyskinesia: the findings, the debate, and the therapeutic implications. Front. Neurol. 5, 242 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Day, M. et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat. Neurosci. 9, 251–259 (2006).An elegant paper showing that dopamine depletion leads to rapid and selective loss of spines and glutamatergic synapses on striatopallidal spiny neurons.

    CAS  PubMed  Google Scholar 

  11. Ueno, T. et al. Morphological and electrophysiological changes in intratelencephalic-type pyramidal neurons in the motor cortex of a rat model of levodopa-induced dyskinesia. Neurobiol. Dis. 64, 142–149 (2014).

    CAS  PubMed  Google Scholar 

  12. Raymond, L.A. et al. Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function. Neuroscience 198, 252–273 (2011).

    CAS  PubMed  Google Scholar 

  13. Galvan, L., André, V.M., Wang, E.A., Cepeda, C. & Levine, M.S. Functional differences between direct and indirect striatal output pathways in Huntington’s disease. J. Huntingtons Dis. 1, 17–25 (2012).

    PubMed  PubMed Central  Google Scholar 

  14. Picconi, B. et al. Plastic and behavioral abnormalities in experimental Huntington’s disease: a crucial role for cholinergic interneurons. Neurobiol. Dis. 22, 143–152 (2006).An important study showing early loss of depotentiation in striatal spiny neurons in a genetic model of Huntington’s disease.

    CAS  PubMed  Google Scholar 

  15. Plotkin, J.L. et al. Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron 83, 178–188 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Milnerwood, A.J. & Raymond, L.A. Corticostriatal synaptic function in mouse models of Huntington’s disease: early effects of huntingtin repeat length and protein load. J. Physiol. (Lond.) 585, 817–831 (2007).

    CAS  Google Scholar 

  17. Tang, T.S., Chen, X., Liu, J. & Bezprozvanny, I. Dopaminergic signaling and striatal neurodegeneration in Huntington’s disease. J. Neurosci. 27, 7899–7910 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ariano, M.A. et al. Striatal neurochemical changes in transgenic models of Huntington’s disease. J. Neurosci. Res. 68, 716–729 (2002).

    CAS  PubMed  Google Scholar 

  19. Tarditi, A. et al. Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiol. Dis. 23, 44–53 (2006).

    CAS  PubMed  Google Scholar 

  20. Giralt, A. et al. Increased PKA signaling disrupts recognition memory and spatial memory: role in Huntington’s disease. Hum. Mol. Genet. 20, 4232–4247 (2011).

    CAS  PubMed  Google Scholar 

  21. Varani, K. et al. Biological abnormalities of peripheral A(2A) receptors in a large representation of polyglutamine disorders and Huntington’s disease stages. Neurobiol. Dis. 27, 36–43 (2007).

    CAS  PubMed  Google Scholar 

  22. Varani, K. et al. Aberrant amplification of A(2A) receptor signaling in striatal cells expressing mutant huntingtin. FASEB J. 15, 1245–1247 (2001).

    CAS  PubMed  Google Scholar 

  23. Li, W. et al. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington’s disease models. Neurobiol. Dis. 79, 70–80 (2015).

    CAS  PubMed  Google Scholar 

  24. Chen, J.Y., Wang, E.A., Cepeda, C. & Levine, M.S. Dopamine imbalance in Huntington’s disease: a mechanism for the lack of behavioral flexibility. Front. Neurosci. 7, 114 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Cummings, D.M. et al. Aberrant cortical synaptic plasticity and dopaminergic dysfunction in a mouse model of Huntington’s disease. Hum. Mol. Genet. 15, 2856–2868 (2006).An interesting study suggesting that alterations in dopaminergic signaling underlie early cortical dysfunction in synaptic plasticity in a genetic model of HD.

    CAS  PubMed  Google Scholar 

  26. Murmu, R.P., Li, W., Holtmaat, A. & Li, J.Y. Dendritic spine instability leads to progressive neocortical spine loss in a mouse model of Huntington’s disease. J. Neurosci. 33, 12997–13009 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mazzocchi-Jones, D., Döbrössy, M. & Dunnett, S.B. Embryonic striatal grafts restore bi-directional synaptic plasticity in a rodent model of Huntington’s disease. Eur. J. Neurosci. 30, 2134–2142 (2009).This study demonstrates that embryonic striatal grafts form functional connections with the host striatal circuitry that are capable of restoring bidirectional synaptic plasticity, similar to that in the normal corticostriatal circuit, in an excitotoxic lesion model of Huntington’s disease.

    PubMed  Google Scholar 

  28. Albanese, A. et al. Phenomenology and classification of dystonia: a consensus update. Mov. Disord. 28, 863–873 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Goodchild, R.E., Grundmann, K. & Pisani, A. New genetic insights highlight 'old' ideas on motor dysfunction in dystonia. Trends Neurosci. 36, 717–725 (2013).

    CAS  PubMed  Google Scholar 

  30. Ozelius, L.J. et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat. Genet. 17, 40–48 (1997).

    CAS  PubMed  Google Scholar 

  31. Martella, G. et al. Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine. Brain 132, 2336–2349 (2009).This study demonstrates the loss of LTD and of synaptic depotentiation in a genetic model of DYT1 dystonia.

    PubMed  PubMed Central  Google Scholar 

  32. Grundmann, K. et al. Generation of a novel rodent model for DYT1 dystonia. Neurobiol. Dis. 47, 61–74 (2012).

    CAS  PubMed  Google Scholar 

  33. Martella, G. et al. Regional specificity of synaptic plasticity deficits in a knock-in mouse model of DYT1 dystonia. Neurobiol. Dis. 65, 124–132 (2014).

    CAS  PubMed  Google Scholar 

  34. Breakefield, X.O. et al. The pathophysiological basis of dystonias. Nat. Rev. Neurosci. 9, 222–234 (2008).

    CAS  PubMed  Google Scholar 

  35. Pisani, A., Bernardi, G., Ding, J. & Surmeier, D.J. Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci. 30, 545–553 (2007).

    CAS  PubMed  Google Scholar 

  36. Sciamanna, G. et al. Cholinergic dysfunction alters synaptic integration between thalamostriatal and corticostriatal inputs in DYT1 dystonia. J. Neurosci. 32, 11991–12004 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sciamanna, G. et al. Developmental profile of the aberrant dopamine D2 receptor response in striatal cholinergic interneurons in DYT1 dystonia. PLoS One 6, e24261 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Napolitano, F. et al. Dopamine D2 receptor dysfunction is rescued by adenosine A2A receptor antagonism in a model of DYT1 dystonia. Neurobiol. Dis. 38, 434–445 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dang, M.T. et al. An anticholinergic reverses motor control and corticostriatal LTD deficits in Dyt1 ΔGAG knock-in mice. Behav. Brain Res. 226, 465–472 (2012).

    CAS  PubMed  Google Scholar 

  40. Pappas, S.S. et al. Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons. eLife 4, e08352 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Eskow Jaunarajs, K.L., Bonsi, P., Chesselet, M.F., Standaert, D.G. & Pisani, A. Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog. Neurobiol. 127-128, 91–107 (2015).

    CAS  PubMed  Google Scholar 

  42. Fahn, S. The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov. Disord. 30, 4–18 (2015).

    CAS  PubMed  Google Scholar 

  43. Picconi, B. et al. Loss of bidirectional striatal synaptic plasticity in l-DOPA-induced dyskinesia. Nat. Neurosci. 6, 501–506 (2003).This study demonstrates that striatal LTP induced by high frequency stimulation of glutamatergic inputs in parkinsonian dyskinetic rats is not reversed by a depotentiation protocol, suggesting that abnormal information storage in corticostriatal synapses is linked with the development of l-DOPA-induced dyskinesia.

    CAS  PubMed  Google Scholar 

  44. Cerovic, M. et al. Derangement of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and extracellular signal-regulated kinase (ERK) dependent striatal plasticity in l-DOPA-induced dyskinesia. Biol. Psychiatry 77, 106–115 (2015).

    CAS  PubMed  Google Scholar 

  45. Picconi, B. et al. Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain 134, 375–387 (2011).

    PubMed  Google Scholar 

  46. Ghiglieri, V. et al. Modulation of serotonergic transmission by eltoprazine in l-DOPA-induced dyskinesia: Behavioral, molecular, and synaptic mechanisms. Neurobiol. Dis. 86, 140–153 (2016).

    CAS  PubMed  Google Scholar 

  47. Thiele, S.L. et al. Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and l-DOPA induced dyskinesia in mouse models. Neurobiol. Dis. 71, 334–344 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fieblinger, T. et al. Cell type-specific plasticity of striatal projection neurons in parkinsonism and l-DOPA-induced dyskinesia. Nat. Commun. 5, 5316 (2014).

    CAS  PubMed  Google Scholar 

  49. Dumas, E.M. et al. Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington’s disease. Hum. Brain Mapp. 33, 203–212 (2012).

    PubMed  Google Scholar 

  50. Rioult-Pedotti, M.S., Pekanovic, A., Atiemo, C.O., Marshall, J. & Luft, A.R. Dopamine promotes motor cortex plasticity and motor skill learning via PLC activation. PLoS One 10, e0124986 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Ziemann, U. et al. Consensus: motor cortex plasticity protocols. Brain Stimul. 1, 164–182 (2008).This important article critically analyzes the properties of the various stimulation protocols used in clinical neurophysiology and their particular strengths and weaknesses.

    PubMed  Google Scholar 

  52. Abbruzzese, G. et al. Intracortical inhibition and facilitation are abnormal in Huntington’s disease: a paired magnetic stimulation study. Neurosci. Lett. 228, 87–90 (1997).

    CAS  PubMed  Google Scholar 

  53. Priori, A., Berardelli, A., Inghilleri, M., Polidori, L. & Manfredi, M. Electromyographic silent period after transcranial brain stimulation in Huntington’s disease. Mov. Disord. 9, 178–182 (1994).

    CAS  PubMed  Google Scholar 

  54. Tegenthoff, M., Vorgerd, M., Juskowiak, F., Roos, V. & Malin, J.P. Postexcitatory inhibition after transcranial magnetic single and double brain stimulation in Huntington’s disease. Electroencephalogr. Clin. Neurophysiol. 101, 298–303 (1996).

    CAS  PubMed  Google Scholar 

  55. Schippling, S. et al. Abnormal motor cortex excitability in preclinical and very early Huntington’s disease. Biol. Psychiatry 65, 959–965 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. Crupi, D. et al. Cortical and brainstem LTP-like plasticity in Huntington’s disease. Brain Res. Bull. 75, 107–114 (2008).

    CAS  PubMed  Google Scholar 

  57. Lorenzano, C. et al. Motor cortical excitability studied with repetitive transcranial magnetic stimulation in patients with Huntington’s disease. Clin. Neurophysiol. 117, 1677–1681 (2006).

    CAS  PubMed  Google Scholar 

  58. Orth, M. et al. Abnormal motor cortex plasticity in premanifest and very early manifest Huntington disease. J. Neurol. Neurosurg. Psychiatry 81, 267–270 (2010).

    PubMed  Google Scholar 

  59. Espay, A.J. et al. Cortical and spinal abnormalities in psychogenic dystonia. Ann. Neurol. 59, 825–834 (2006).

    PubMed  Google Scholar 

  60. Huang, Y.Z., Rothwell, J.C., Lu, C.S., Wang, J. & Chen, R.S. Restoration of motor inhibition through an abnormal premotor-motor connection in dystonia. Mov. Disord. 25, 696–703 (2010).

    PubMed  PubMed Central  Google Scholar 

  61. Ridding, M.C., Sheean, G., Rothwell, J.C., Inzelberg, R. & Kujirai, T. Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J. Neurol. Neurosurg. Psychiatry 59, 493–498 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Brighina, F. et al. Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. Exp. Brain Res. 192, 651–656 (2009).

    CAS  PubMed  Google Scholar 

  63. Stinear, C.M. & Byblow, W.D. Impaired inhibition of a pre-planned response in focal hand dystonia. Exp. Brain Res. 158, 207–212 (2004).

    PubMed  Google Scholar 

  64. Chen, R. & Hallett, M. Focal dystonia and repetitive motion disorders. Clin. Orthop. Relat. Res. (351): 102–106 (1998).

  65. Kimberley, T.J. et al. Establishing the definition and inter-rater reliability of cortical silent period calculation in subjects with focal hand dystonia and healthy controls. Neurosci. Lett. 464, 84–87 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kojovic, M. et al. Secondary and primary dystonia: pathophysiological differences. Brain 136, 2038–2049 (2013).

    PubMed  Google Scholar 

  67. Sohn, Y.H. & Hallett, M. Disturbed surround inhibition in focal hand dystonia. Ann. Neurol. 56, 595–599 (2004).

    PubMed  Google Scholar 

  68. Koch, G. et al. Altered dorsal premotor-motor interhemispheric pathway activity in focal arm dystonia. Mov. Disord. 23, 660–668 (2008).

    PubMed  Google Scholar 

  69. Quartarone, A. et al. Abnormal associative plasticity of the human motor cortex in writer’s cramp. Brain 126, 2586–2596 (2003).

    PubMed  Google Scholar 

  70. Weise, D. et al. The two sides of associative plasticity in writer’s cramp. Brain 129, 2709–2721 (2006).

    PubMed  Google Scholar 

  71. Edwards, M.J., Huang, Y.Z., Mir, P., Rothwell, J.C. & Bhatia, K.P. Abnormalities in motor cortical plasticity differentiate manifesting and nonmanifesting DYT1 carriers. Mov. Disord. 21, 2181–2186 (2006).

    PubMed  Google Scholar 

  72. Tamura, Y. et al. Disordered plasticity in the primary somatosensory cortex in focal hand dystonia. Brain 132, 749–755 (2009).

    PubMed  PubMed Central  Google Scholar 

  73. Tisch, S. et al. Pallidal stimulation modifies after-effects of paired associative stimulation on motor cortex excitability in primary generalised dystonia. Exp. Neurol. 206, 80–85 (2007).

    PubMed  Google Scholar 

  74. Ruge, D. et al. Shaping reversibility? Long-term deep brain stimulation in dystonia: the relationship between effects on electrophysiology and clinical symptoms. Brain 134, 2106–2115 (2011).

    PubMed  Google Scholar 

  75. Sadnicka, A., Hamada, M., Bhatia, K.P., Rothwell, J.C. & Edwards, M.J. A reflection on plasticity research in writing dystonia. Mov. Disord. 29, 980–987 (2014).

    PubMed  Google Scholar 

  76. Quartarone, A. et al. Abnormal sensorimotor plasticity in organic but not in psychogenic dystonia. Brain 132, 2871–2877 (2009).This seminal work shows that abnormal plasticity is a hallmark of organic dystonia while dystonia of psychogenic origin is characterized by normal plasticity.

    CAS  PubMed  Google Scholar 

  77. Kang, J.S., Terranova, C., Hilker, R., Quartarone, A. & Ziemann, U. Deficient homeostatic regulation of practice-dependent plasticity in writer’s cramp. Cereb. Cortex 21, 1203–1212 (2011).

    PubMed  Google Scholar 

  78. Quartarone, A. et al. Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain 128, 1943–1950 (2005).

    PubMed  Google Scholar 

  79. Morgante, F., Espay, A.J., Gunraj, C., Lang, A.E. & Chen, R. Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain 129, 1059–1069 (2006).

    PubMed  Google Scholar 

  80. Huang, Y.Z., Rothwell, J.C., Lu, C.S., Chuang, W.L. & Chen, R.S. Abnormal bidirectional plasticity-like effects in Parkinson’s disease. Brain 134, 2312–2320 (2011).This study, using a clinical neurophysiological approach, demonstrates that depotentiation is abnormal in the motor cortex of people with Parkinson’s disease with levodopa-induced dyskinesias.

    PubMed  Google Scholar 

  81. Fasano, A. & Lozano, A.M. Deep brain stimulation for movement disorders: 2015 and beyond. Curr. Opin. Neurol. 28, 423–436 (2015).

    CAS  PubMed  Google Scholar 

  82. Prescott, I.A. et al. Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson’s disease patients. Brain 132, 309–318 (2009).

    CAS  PubMed  Google Scholar 

  83. Prescott, I.A. et al. Lack of depotentiation at basal ganglia output neurons in PD patients with levodopa-induced dyskinesia. Neurobiol. Dis. 71, 24–33 (2014).This study, performed in people with dyskinesia implanted with electrodes for DBS, demonstrates impaired depotentiation in basal ganglia output nuclei. It is an important validation of the animal models of levodopa-induced dyskinesia.

    CAS  PubMed  Google Scholar 

  84. Fox, M.D. & Alterman, R.L. Brain stimulation for torsion dystonia. JAMA Neurol. 72, 713–719 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Barow, E. et al. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements. Brain 137, 3012–3024 (2014).

    PubMed  Google Scholar 

  86. Ruge, D. et al. Deep brain stimulation effects in dystonia: time course of electrophysiological changes in early treatment. Mov. Disord. 26, 1913–1921 (2011).

    PubMed  PubMed Central  Google Scholar 

  87. Prescott, I.A. et al. Reduced paired pulse depression in the basal ganglia of dystonia patients. Neurobiol. Dis. 51, 214–221 (2013).

    CAS  PubMed  Google Scholar 

  88. Sharma, M. & Deogaonkar, M. Deep brain stimulation in Huntington’s disease: assessment of potential targets. J. Clin. Neurosci. 22, 812–817 (2015).

    PubMed  Google Scholar 

  89. Chou, Y.H., Hickey, P.T., Sundman, M., Song, A.W. & Chen, N.K. Effects of repetitive transcranial magnetic stimulation on motor symptoms in Parkinson disease: a systematic review and meta-analysis. JAMA Neurol. 72, 432–440 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Udupa, K. & Chen, R. Motor cortical plasticity in Parkinson’s disease. Front. Neurol. 4, 128 (2013).

    PubMed  PubMed Central  Google Scholar 

  91. Lefaucheur, J.P. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 125, 2150–2206 (2014).

    PubMed  Google Scholar 

  92. Koch, G. et al. rTMS of supplementary motor area modulates therapy-induced dyskinesias in Parkinson disease. Neurology 65, 623–625 (2005).This study shows that rTMS at 1 Hz markedly reduced drug-induced dyskinesias, whereas stimulation at 5 Hz did not affect it, suggesting possible therapeutic effects only of stimulation frequencies able to induce synaptic depotentiation.

    CAS  PubMed  Google Scholar 

  93. Filipović, S.R., Rothwell, J.C., van de Warrenburg, B.P. & Bhatia, K. Repetitive transcranial magnetic stimulation for levodopa-induced dyskinesias in Parkinson’s disease. Mov. Disord. 24, 246–253 (2009).

    PubMed  Google Scholar 

  94. Koch, G. et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology 73, 113–119 (2009).

    CAS  PubMed  Google Scholar 

  95. Cerasa, A. et al. A network centred on the inferior frontal cortex is critically involved in levodopa-induced dyskinesias. Brain 138, 414–427 (2015).

    PubMed  Google Scholar 

  96. Ceballos-Baumann, A.O. et al. Overactive prefrontal and underactive motor cortical areas in idiopathic dystonia. Ann. Neurol. 37, 363–372 (1995).

    CAS  PubMed  Google Scholar 

  97. Brusa, L. et al. Improvement of choreic movements by 1 Hz repetitive transcranial magnetic stimulation in Huntington’s disease patients. Ann. Neurol. 58, 655–656 (2005).

    PubMed  Google Scholar 

  98. Shukla, A., Jayarajan, R.N., Muralidharan, K. & Jain, S. Repetitive transcranial magnetic stimulation not beneficial in severe choreiform movements of Huntington disease. J. ECT 29, e16–e17 (2013).

    PubMed  Google Scholar 

  99. Moisello, C. et al. TMS enhances retention of a motor skill in Parkinson’s disease. Brain Stimul. 8, 224–230 (2015).

    PubMed  Google Scholar 

  100. Udupa, K. et al. Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in Parkinson’s disease. J. Neurosci. 36, 396–404 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Progetto di Ricerca di Interesse Nazionale (PRIN) 2011 (prot. 2010AHHP5H) (to A.P. and P.C.), Fondazione Cariplo, grant no. 2014-0660 (to P.C.), Italian Ministry of Education, University and Research, FIRB Call Program “Futuro in Ricerca” Project no. RBFR13S4LE_002 (to V.G.) and from the Italian Ministry of Health, Ricerca Finalizzata and Giovani Ricercatori (GR-2010-2316671 to V.G., RF-2013-02357386 to B.P. and RF-2013-02356215 to P.C.).

Author information

Authors and Affiliations

Authors

Contributions

A.P., J.A.O., J.R. and P.C. conceived and planned the Perspective. P.C. wrote the first draft of the Perspective. All authors contributed to the discussion and edited the Perspective. B.P. and V.G. edited the manuscript and made the figures.

Ethics declarations

Competing interests

P.C. receives research support from Bayer Schering, Biogen, Merck Sharp & Dohme, Sanofi-Aventis, and UCB Pharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calabresi, P., Pisani, A., Rothwell, J. et al. Hyperkinetic disorders and loss of synaptic downscaling. Nat Neurosci 19, 868–875 (2016). https://doi.org/10.1038/nn.4306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4306

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing