Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pericytes of the neurovascular unit: key functions and signaling pathways

Abstract

Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles and post-capillary venules. CNS pericytes are uniquely positioned in the neurovascular unit between endothelial cells, astrocytes and neurons. They integrate, coordinate and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease, including regulation of the blood–brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation and stem cell activity. Here we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes and neurons that control neurovascular functions. We also review the role of pericytes in CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The multifunctional role of CNS pericytes at the NVU.
Figure 2: PDGF-BB–PDGFRβ signaling in pericytes.
Figure 3: Deficient PDGF-BB–PDGFRβ signaling in pericytes may promote neuronal dysfunction and degeneration in Alzheimer's dementia.
Figure 4: TGF-β–TGFβR2, Notch, VEGF-A–VEGFR2, Ang–Tie2 and MFSD2A signaling pathways.
Figure 5: Pericyte–astrocyte and pericyte–neuron signaling pathways.
Figure 6: Integrated pathways between pericytes, endothelial cells and astrocytes in the NVU.

Similar content being viewed by others

References

  1. Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Winkler, E.A., Bell, R.D. & Zlokovic, B.V. Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398–1405 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Iadecola, C. The pathobiology of vascular dementia. Neuron 80, 844–866 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Attwell, D. et al. Glial and neuronal control of brain blood flow. Nature 468, 232–243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Hamilton, N.B., Attwell, D. & Hall, C.N. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenergetics http://dx.doi.org/10.3389/fnene.2010.00005 (2010).

  7. Zhao, Z., Nelson, A.R., Betsholtz, C. & Zlokovic, B.V. Establishment and dysfunction of the blood-brain barrier. Cell 163, 1064–1078 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Daneman, R., Zhou, L., Kebede, A.A. & Barres, B.A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Bell, R.D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bell, R.D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zlokovic, B.V., Begley, D.J. & Chain-Eliash, D.G. Blood-brain barrier permeability to leucine-enkephalin, D-alanine2-D-leucine5-enkephalin and their N-terminal amino acid (tyrosine). Brain Res. 336, 125–132 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Zlokovic´, B.V., Segal, M.B., Begley, D.J., Davson, H. & Rakic´, L. Permeability of the blood-cerebrospinal fluid and blood-brain barriers to thyrotropin-releasing hormone. Brain Res. 358, 191–199 (1985).

    Article  PubMed  Google Scholar 

  14. Zlokovic´, B.V., Lipovac, M.N., Begley, D.J., Davson, H. & Rakic´, L. Transport of leucine-enkephalin across the blood-brain barrier in the perfused guinea pig brain. J. Neurochem. 49, 310–315 (1987).

    Article  PubMed  Google Scholar 

  15. Zlokovic, B.V. Cerebrovascular permeability to peptides: manipulations of transport systems at the blood-brain barrier. Pharm. Res. 12, 1395–1406 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Zlokovic, B.V. Neurodegeneration and the neurovascular unit. Nat. Med. 16, 1370–1371 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Dore-Duffy, P. Pericytes: pluripotent cells of the blood brain barrier. Curr. Pharm. Des. 14, 1581–1593 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Krueger, M. & Bechmann, I. CNS pericytes: concepts, misconceptions, and a way out. Glia 58, 1–10 (2010).

    Article  PubMed  Google Scholar 

  19. Attwell, D., Mishra, A., Hall, C.N., O'Farrell, F.M. & Dalkara, T. What is a pericyte? J. Cereb. Blood Flow Metab. 36, 451–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Hartmann, D.A. et al. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics 2, 041402 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. van Dijk, C.G.M. et al. The complex mural cell: pericyte function in health and disease. Int. J. Cardiol. 190, 75–89 (2015).

    Article  PubMed  Google Scholar 

  22. Bondjers, C. et al. Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. FASEB J. 20, 1703–1705 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Johnson, M.B. et al. Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex. Nat. Neurosci. 18, 637–646 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, K.-T. et al. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol. 16, 127 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Arnold, T.D. et al. Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking αVβ8-TGFβ signaling in the brain. Development 141, 4489–4499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sagare, A.P. et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun. 4, 2932 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. Pieper, C., Marek, J.J., Unterberg, M., Schwerdtle, T. & Galla, H.-J. Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res. 1550, 1–8 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Iadecola, C. & Nedergaard, M. Glial regulation of the cerebral microvasculature. Nat. Neurosci. 10, 1369–1376 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. MacVicar, B.A. & Newman, E.A. Astrocyte regulation of blood flow in the brain. Cold Spring Harb. Perspect. Biol. 7, a020388 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hall, C.N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fernández-Klett, F., Offenhauser, N., Dirnagl, U., Priller, J. & Lindauer, U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc. Natl. Acad. Sci. USA 107, 22290–22295 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dai, M., Nuttall, A., Yang, Y. & Shi, X. Visualization and contractile activity of cochlear pericytes in the capillaries of the spiral ligament. Hear. Res. 254, 100–107 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yamanishi, S., Katsumura, K., Kobayashi, T. & Puro, D.G. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H925–H934 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Chaigneau, E., Oheim, M., Audinat, E. & Charpak, S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc. Natl. Acad. Sci. USA 100, 13081–13086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peppiatt, C.M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hill, R.A. et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95–110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Olson, L.E. & Soriano, P. PDGFRβ signaling regulates mural cell plasticity and inhibits fat development. Dev. Cell 20, 815–826 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, S. et al. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J. Exp. Med. 203, 1519–1532 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Voisin, M.-B., Pröbstl, D. & Nourshargh, S. Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during inflammation. Am. J. Pathol. 176, 482–495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jansson, D. et al. A role for human brain pericytes in neuroinflammation. J. Neuroinflammation 11, 104 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kovac, A., Erickson, M.A. & Banks, W.A. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J. Neuroinflammation 8, 139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakagomi, T. et al. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 33, 1962–1974 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Winkler, E.A., Sengillo, J.D., Bell, R.D., Wang, J. & Zlokovic, B.V. Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability. J. Cereb. Blood Flow Metab. 32, 1841–1852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Winkler, E.A. et al. Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc. Natl. Acad. Sci. USA 111, E1035–E1042 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davalos, D. et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat. Commun. 3, 1227 (2012).

    Article  PubMed  CAS  Google Scholar 

  46. Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031–1037 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Keller, A. et al. Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat. Genet. 45, 1077–1082 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Nicolas, G. et al. Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification. Neurology 80, 181–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Halliday, M.R. et al. Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein e4 carriers and blood-brain barrier breakdown. JAMA Neurol. 70, 1198–1200 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Halliday, M.R. et al. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. J. Cereb. Blood Flow Metab. http://dx.doi.org/10.1038/jcbfm.2015.44 (2015).10.1038/jcbfm.2015.44

  51. Winkler, E.A. et al. Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol. 125, 111–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Geraldes, P. et al. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat. Med. 15, 1298–1306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Behl, Y., Krothapalli, P., Desta, T., Roy, S. & Graves, D.T. FOXO1 plays an important role in enhanced microvascular cell apoptosis and microvascular cell loss in type 1 and type 2 diabetic rats. Diabetes 58, 917–925 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alikhani, M., Roy, S. & Graves, D.T. FOXO1 plays an essential role in apoptosis of retinal pericytes. Mol. Vis. 16, 408–415 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Niu, F., Yao, H., Zhang, W., Sutliff, R.L. & Buch, S. Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J. Neurosci. 34, 11812–11825 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marchi, N. & Lerner-Natoli, M. Cerebrovascular remodeling and epilepsy. Neuroscientist 19, 304–312 (2013).

    Article  PubMed  CAS  Google Scholar 

  57. Ghosh, M. et al. Pericytes are involved in the pathogenesis of CADASIL. Ann. Neurol. 78, 887–900 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, F. et al. A microRNA-1280/JAG2 network comprises a novel biological target in high-risk medulloblastoma. Oncotarget 6, 2709–2724 (2015).

    Article  PubMed  Google Scholar 

  59. Heldin, C.-H. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun. Signal. 11, 97 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lindahl, P., Johansson, B.R., Levéen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Winkler, E.A., Bell, R.D. & Zlokovic, B.V. Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol. Neurodegener. 5, 32 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Tallquist, M.D., French, W.J. & Soriano, P. Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol. 1, e52 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Jurek, A., Heldin, C.-H. & Lennartsson, J. Platelet-derived growth factor-induced signaling pathways interconnect to regulate the temporal pattern of Erk1/2 phosphorylation. Cell. Signal. 23, 280–287 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Jin, S. et al. Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Circ. Res. 102, 1483–1491 (2008).

    CAS  PubMed  Google Scholar 

  65. Song, S., Ewald, A.J., Stallcup, W., Werb, Z. & Bergers, G. PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat. Cell Biol. 7, 870–879 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hellström, M. et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol. 153, 543–553 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang, C. et al. Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat. Genet. 44, 254–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Lemos, R.R. et al. Update and mutational analysis of SLC20A2: a major cause of primary familial brain calcification. Hum. Mutat. 36, 489–495 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Sengillo, J.D. et al. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer's disease. Brain Pathol. 23, 303–310 (2013).

    Article  PubMed  Google Scholar 

  70. Farkas, E. & Luiten, P.G. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog. Neurobiol. 64, 575–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Baloyannis, S.J. & Baloyannis, I.S. The vascular factor in Alzheimer's disease: a study in Golgi technique and electron microscopy. J. Neurol. Sci. 322, 117–121 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Park, L. et al. Innate immunity receptor CD36 promotes cerebral amyloid angiopathy. Proc. Natl. Acad. Sci. USA 110, 3089–3094 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Montagne, A. et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Björkqvist, M., Ohlsson, M., Minthon, L. & Hansson, O. Evaluation of a previously suggested plasma biomarker panel to identify Alzheimer's disease. PLoS One 7, e29868 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Sagare, A.P., Sweeney, M.D., Makshanoff, J. & Zlokovic, B.V. Shedding of soluble platelet-derived growth factor receptor-β from human brain pericytes. Neurosci. Lett. 607, 97–101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rogaeva, E. et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet. 39, 168–177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reitz, C. et al. Meta-analysis of the association between variants in SORL1 and Alzheimer disease. Arch. Neurol. 68, 99–106 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kooner, J.S. et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet. 43, 984–989 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reitz, C. The role of intracellular trafficking and the VPS10d receptors in Alzheimer's disease. Future Neurol. 7, 423–431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hermey, G., Sjøgaard, S.S., Petersen, C.M., Nykjaer, A. & Gliemann, J. Tumour necrosis factor alpha-converting enzyme mediates ectodomain shedding of Vps10p-domain receptor family members. Biochem. J. 395, 285–293 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gliemann, J. et al. The mosaic receptor sorLA/LR11 binds components of the plasminogen-activating system and platelet-derived growth factor-BB similarly to LRP1 (low-density lipoprotein receptor-related protein), but mediates slow internalization of bound ligand. Biochem. J. 381, 203–212 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zlokovic, B.V., Deane, R., Sagare, A.P., Bell, R.D. & Winkler, E.A. Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain. J. Neurochem. 115, 1077–1089 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Karch, C.M., Cruchaga, C. & Goate, A.M. Alzheimer's disease genetics: from the bench to the clinic. Neuron 83, 11–26 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Armstrong, R.A. Spatial correlations between beta-amyloid (Abeta) deposits and blood vessels in familial Alzheimer's disease. Folia Neuropathol. 46, 241–248 (2008).

    CAS  PubMed  Google Scholar 

  85. Kang, D.E. et al. Presenilins mediate phosphatidylinositol 3-kinase/AKT and ERK activation via select signaling receptors. Selectivity of PS2 in platelet-derived growth factor signaling. J. Biol. Chem. 280, 31537–31547 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Gama Sosa, M.A. et al. Age-related vascular pathology in transgenic mice expressing presenilin 1-associated familial Alzheimer's disease mutations. Am. J. Pathol. 176, 353–368 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sweeney, M.D., Sagare, A.P. & Zlokovic, B.V. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer's disease. J. Cereb. Blood Flow Metab. 35, 1055–1068 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhong, Z. et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat. Neurosci. 11, 420–422 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 111, 1287–1295 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shaheen, R.M. et al. Tyrosine kinase inhibition of multiple angiogenic growth factor receptors improves survival in mice bearing colon cancer liver metastases by inhibition of endothelial cell survival mechanisms. Cancer Res. 61, 1464–1468 (2001).

    CAS  PubMed  Google Scholar 

  92. Guichet, P.-O. et al. Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cells 33, 21–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Cheng, L. et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153, 139–152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sato, Y. & Rifkin, D.B. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J. Cell Biol. 109, 309–315 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Hirschi, K.K., Burt, J.M., Hirschi, K.D. & Dai, C. Gap junction communication mediates transforming growth factor-beta activation and endothelial-induced mural cell differentiation. Circ. Res. 93, 429–437 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Van Geest, R.J., Klaassen, I., Vogels, I.M.C., Van Noorden, C.J.F. & Schlingemann, R.O. Differential TGF-beta signaling in retinal vascular cells: a role in diabetic retinopathy? Invest. Ophthalmol. Vis. Sci. 51, 1857–1865 (2010).

    Article  PubMed  Google Scholar 

  97. Reyahi, A. et al. Foxf2 is required for brain pericyte differentiation and development and maintenance of the blood-brain barrier. Dev. Cell 34, 19–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Darland, D.C. & D'Amore, P.A. TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis 4, 11–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Maddaluno, L. et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498, 492–496 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Li, F. et al. Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev. Cell 20, 291–302 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Goumans, M.J. & Mummery, C. Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int. J. Dev. Biol. 44, 253–265 (2000).

    CAS  PubMed  Google Scholar 

  102. Vinukonda, G. et al. Effect of prenatal glucocorticoids on cerebral vasculature of the developing brain. Stroke 41, 1766–1773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schulz, G.B. et al. Cerebral cavernous malformation-1 protein controls DLL4-Notch3 signaling between the endothelium and pericytes. Stroke 46, 1337–1343 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Bergametti, F. et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am. J. Hum. Genet. 76, 42–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Li, X. et al. Molecular recognition of leucine-aspartate repeat (LD) motifs by the focal adhesion targeting homology domain of cerebral cavernous malformation 3 (CCM3). J. Biol. Chem. 286, 26138–26147 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bruna, A. et al. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11, 147–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Dieterich, L.C. et al. Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGFβ2 in vascular abnormalization. J. Pathol. 228, 378–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Svensson, A., Özen, I., Genové, G., Paul, G. & Bengzon, J. Endogenous brain pericytes are widely activated and contribute to mouse glioma microvasculature. PLoS One 10, e0123553 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Slevin, M. et al. Serial measurement of vascular endothelial growth factor and transforming growth factor-beta1 in serum of patients with acute ischemic stroke. Stroke 31, 1863–1870 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Böttner, M., Krieglstein, K. & Unsicker, K. The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J. Neurochem. 75, 2227–2240 (2000).

    Article  PubMed  Google Scholar 

  111. Henshall, T.L. et al. Notch3 is necessary for blood vessel integrity in the central nervous system. Arterioscler. Thromb. Vasc. Biol. 35, 409–420 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Reis, M. & Liebner, S. Wnt signaling in the vasculature. Exp. Cell Res. 319, 1317–1323 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Liebner, S. & Plate, K.H. Differentiation of the brain vasculature: the answer came blowing by the Wnt. J. Angiogenes. Res. 2, 1 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16, 2684–2698 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hellström, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  PubMed  CAS  Google Scholar 

  117. Gale, N.W. et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc. Natl. Acad. Sci. USA 101, 15949–15954 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Krebs, L.T. et al. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev. 18, 2469–2473 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Franco, M., Roswall, P., Cortez, E., Hanahan, D. & Pietras, K. Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood 118, 2906–2917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gonul, E. et al. Early pericyte response to brain hypoxia in cats: an ultrastructural study. Microvasc. Res. 64, 116–119 (2002).

    Article  PubMed  Google Scholar 

  121. Dore-Duffy, P., Wang, X., Mehedi, A., Kreipke, C.W. & Rafols, J.A. Differential expression of capillary VEGF isoforms following traumatic brain injury. Neurol. Res. 29, 395–403 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Al Ahmad, A., Gassmann, M. & Ogunshola, O.O. Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J. Cell. Physiol. 218, 612–622 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Engelhardt, S., Patkar, S. & Ogunshola, O.O. Cell-specific blood-brain barrier regulation in health and disease: a focus on hypoxia. Br. J. Pharmacol. 171, 1210–1230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim, K.J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844 (1993).

    Article  CAS  PubMed  Google Scholar 

  125. Kickingereder, P. et al. MR perfusion-derived hemodynamic parametric response mapping of bevacizumab efficacy in recurrent glioblastoma. Radiology 279, 542–552 (2016).

    Article  PubMed  Google Scholar 

  126. Greenberg, J.I. et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456, 809–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lu, K.V. et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22, 21–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yuan, H.T., Khankin, E.V., Karumanchi, S.A. & Parikh, S.M. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol. Cell. Biol. 29, 2011–2022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Felcht, M. et al. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J. Clin. Invest. 122, 1991–2005 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Benest, A.V. et al. Angiopoietin-2 is critical for cytokine-induced vascular leakage. PLoS One 8, e70459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Uemura, A. et al. Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J. Clin. Invest. 110, 1619–1628 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Feng, Y. et al. Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression. Thromb. Haemost. 97, 99–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Cui, X. et al. Angiopoietin/Tie2 pathway mediates type 2 diabetes induced vascular damage after cerebral stroke. Neurobiol. Dis. 43, 285–292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang, L. et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res. 63, 3403–3412 (2003).

    CAS  PubMed  Google Scholar 

  136. Nguyen, L.N. et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509, 503–506 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509, 507–511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Alakbarzade, V. et al. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat. Genet. 47, 814–817 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Guemez-Gamboa, A. et al. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat. Genet. 47, 809–813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Augustin, H.G. & Reiss, Y. EphB receptors and ephrinB ligands: regulators of vascular assembly and homeostasis. Cell Tissue Res. 314, 25–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Salvucci, O. et al. EphrinB reverse signaling contributes to endothelial and mural cell assembly into vascular structures. Blood 114, 1707–1716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Foo, S.S. et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124, 161–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Gale, N.W. et al. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev. Biol. 230, 151–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Erber, R. et al. EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J. 25, 628–641 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Garmy-Susini, B. et al. Integrin alpha4beta1-VCAM-1-mediated adhesion between endothelial and mural cells is required for blood vessel maturation. J. Clin. Invest. 115, 1542–1551 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gerhardt, H., Wolburg, H. & Redies, C. N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev. Dyn. 218, 472–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Tillet, E. et al. N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis. Exp. Cell Res. 310, 392–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Christian, S. et al. Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. Am. J. Pathol. 172, 486–494 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Simonavicius, N. et al. Endosialin (CD248) is a marker of tumor-associated pericytes in high-grade glioma. Mod. Pathol. 21, 308–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. MacFadyen, J., Savage, K., Wienke, D. & Isacke, C.M. Endosialin is expressed on stromal fibroblasts and CNS pericytes in mouse embryos and is downregulated during development. Gene Expr. Patterns 7, 363–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Hultman, K., Strickland, S. & Norris, E.H. The APOE ɛ4/ɛ4 genotype potentiates vascular fibrin(ogen) deposition in amyloid-laden vessels in the brains of Alzheimer's disease patients. J. Cereb. Blood Flow Metab. 33, 1251–1258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nishitsuji, K., Hosono, T., Nakamura, T., Bu, G. & Michikawa, M. Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. J. Biol. Chem. 286, 17536–17542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Alata, W., Ye, Y., St-Amour, I., Vandal, M. & Calon, F. Human apolipoprotein E ɛ4 expression impairs cerebral vascularization and blood-brain barrier function in mice. J. Cereb. Blood Flow Metab. 35, 86–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Gebremedhin, D. et al. Production of 20-HETE and its role in autoregulation of cerebral blood flow. Circ. Res. 87, 60–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Kamouchi, M. et al. Calcium influx pathways in rat CNS pericytes. Brain Res. Mol. Brain Res. 126, 114–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Sakagami, K., Kawamura, H., Wu, D.M. & Puro, D.G. Nitric oxide/cGMP-induced inhibition of calcium and chloride currents in retinal pericytes. Microvasc. Res. 62, 196–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Nakamura, K. et al. Amiloride inhibits hydrogen peroxide-induced Ca2+ responses in human CNS pericytes. Microvasc. Res. 77, 327–334 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Mufti, R.E. et al. Intravascular pressure augments cerebral arterial constriction by inducing voltage-insensitive Ca2+ waves. J. Physiol. (Lond.) 588, 3983–4005 (2010).

    Article  CAS  Google Scholar 

  160. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Hamel, E. Cholinergic modulation of the cortical microvascular bed. Prog. Brain Res. 145, 171–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Blinder, P. et al. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 16, 889–897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lovick, T.A., Brown, L.A. & Key, B.J. Neurovascular relationships in hippocampal slices: physiological and anatomical studies of mechanisms underlying flow-metabolism coupling in intraparenchymal microvessels. Neuroscience 92, 47–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Shimizu, F. et al. Pericyte-derived glial cell line-derived neurotrophic factor increase the expression of claudin-5 in the blood-brain barrier and the blood-nerve barrier. Neurochem. Res. 37, 401–409 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Takahashi, H. et al. Brain pericyte-derived soluble factors enhance insulin sensitivity in GT1-7 hypothalamic neurons. Biochem. Biophys. Res. Commun. 457, 532–537 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Iliff, J.J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Hawkes, C.A. et al. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 121, 431–443 (2011).

    Article  PubMed  Google Scholar 

  168. Helbig, H. et al. Membrane potentials in retinal capillary pericytes: excitability and effect of vasoactive substances. Invest. Ophthalmol. Vis. Sci. 33, 2105–2112 (1992).

    CAS  PubMed  Google Scholar 

  169. Li, Q. & Puro, D.G. Adenosine activates ATP-sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors. Brain Res. 907, 93–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Wu, D.M., Kawamura, H., Li, Q. & Puro, D.G. Dopamine activates ATP-sensitive K+ currents in rat retinal pericytes. Vis. Neurosci. 18, 935–940 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Alcendor, D.J. et al. Neurovascular unit on a chip: implications for translational applications. Stem Cell Res. Ther. 4 (suppl. 1), S18 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kleinstreuer, N. et al. A computational model predicting disruption of blood vessel development. PLoS Comput. Biol. 9, e1002996 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ruck, T., Bittner, S. & Meuth, S.G. Blood-brain barrier modeling: challenges and perspectives. Neural Regen. Res. 10, 889–891 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ayyadurai, V.A.S. & Dewey, C.F. CytoSolve: a scalable computational method for dynamic integration of multiple molecular pathway models. Cell. Mol. Bioeng. 4, 28–45 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B.V.Z. is supported by the National Institutes of Health grants R01AG023084, R01NS090904, R01NS034467 and R01AG039452 and the Cure for Alzheimer's Fund.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

S.A. is employed by CytoSolve, Inc. which developed a software-based computational platform for scalable integration of molecular models to offer a systems biology approach to pathway analysis.

Integrated supplementary information

Supplementary Figure 1 Signal transduction pathways of endothelial cells: expanded details of ‘NVU cells’ layer in the NVU integrated pathway model.

The numbered boxes partition the cell’s downstream molecular events and the arrows between boxes illustrate interactions amongst pathways. Additional signal transduction events can be modularly incorporated into this model, as indicated in box 12. Multiple signal transduction events can promote a given function (denoted in yellow box). Specific downstream signaling mechanisms and resulting transcriptional gene expression/inhibition in endothelial cells can directly promote or inhibit signaling with pericytes (see ‘interactive signaling’ in Figure 6) that, when awry, can contribute to dysfunction in major neurological disorders (see ‘Disorders’ in Figure 6).

Supplementary Figure 2 Signal transduction pathways of pericytes: expanded details of ‘NVU cells’ layer in the NVU integrated pathway model.

The numbered boxes partition the cell’s downstream molecular events and the arrows between boxes illustrate interactions amongst pathways. Additional signal transduction events can be modularly incorporated into this model, as indicated in box 13. Multiple signal transduction events can promote a given function (denoted in yellow box). Specific downstream signaling mechanisms and resulting transcriptional gene expression/inhibition in endothelial cells can directly promote or inhibit signaling with endothelial cells or astrocytes (see ‘interactive signaling’ in Figure 6) that, when awry, can contribute to dysfunction in major neurological disorders (see ‘Disorders’ in Figure 6).

Supplementary Figure 3 Signal transduction pathways of astrocytes: expanded details of ‘NVU cells’ layer in the NVU integrated pathway model.

The numbered boxes partition the cell’s downstream molecular events and the arrows between boxes illustrate interactions amongst pathways. Additional signal transduction events can be modularly incorporated into this model, as indicated in box 2. Specific downstream signaling mechanisms and resulting transcriptional gene expression/inhibition in endothelial cells can directly promote or inhibit signaling with pericytes (see ‘interactive signaling’ in Figure 6) that, when awry, can contribute to dysfunction in major neurological disorders (see ‘Disorders’ in Figure 6).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1-3 (PDF 651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweeney, M., Ayyadurai, S. & Zlokovic, B. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19, 771–783 (2016). https://doi.org/10.1038/nn.4288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4288

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing