Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Is cortical connectivity optimized for storing information?

Abstract

Cortical networks are thought to be shaped by experience-dependent synaptic plasticity. Theoretical studies have shown that synaptic plasticity allows a network to store a memory of patterns of activity such that they become attractors of the dynamics of the network. Here we study the properties of the excitatory synaptic connectivity in a network that maximizes the number of stored patterns of activity in a robust fashion. We show that the resulting synaptic connectivity matrix has the following properties: it is sparse, with a large fraction of zero synaptic weights ('potential' synapses); bidirectionally coupled pairs of neurons are over-represented in comparison to a random network; and bidirectionally connected pairs have stronger synapses on average than unidirectionally connected pairs. All these features reproduce quantitatively available data on connectivity in cortex. This suggests synaptic connectivity in cortex is optimized to store a large number of attractor states in a robust fashion.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Model and space of synaptic weights.
Figure 2: Distribution of synaptic weights of an optimal network.
Figure 3: Joint distribution of synaptic weights connecting a pair of neurons.
Figure 4: Distributions of degrees in optimal network (N = 800, f = 0.5, for two values of ρ, ρ = 0 (black) and ρ = 4 (red).
Figure 5: Higher order motifs: probabilities of observing k connections in n-neuron subnetworks, as a function of k, for different values of n (3 ≤ n ≤ 8; N = 800, f = 0.5, ρ = 4).
Figure 6: Effect of inhibition on statistics of connectivity.
Figure 7: Reciprocal connection probability as a function of connection probability: Fixed-point attractors versus sequences of activity.

References

  1. Braitenberg, V. & Schütz, A. Anatomy of the Cortex (Springer, 1991).

  2. Kalisman, N., Silberberg, G. & Markram, H. The neocortical microcircuit as a tabula rasa. Proc. Natl. Acad. Sci. USA 102, 880–885 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Stepanyants, A., Hof, P.R. & Chklovskii, D.B. Geometry and structural plasticity of synaptic connectivity. Neuron 34, 275–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Mason, A., Nicoll, A. & Stratford, K. Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. J. Neurosci. 11, 72–84 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Markram, H., Lübke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. (Lond.) 500, 409–440 (1997).

    Article  CAS  Google Scholar 

  7. Sjöström, P.J., Turrigiano, G.G. & Nelson, S.B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001).

    Article  PubMed  Google Scholar 

  8. Holmgren, C., Harkany, T., Svennenfors, B. & Zilberter, Y. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. (Lond.) 551, 139–153 (2003).

    Article  CAS  Google Scholar 

  9. Thomson, A.M. & Lamy, C. Functional maps of neocortical local circuitry. Front. Neurosci. 1, 19–42 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lefort, S., Tomm, C., Floyd Sarria, J.C. & Petersen, C.C. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Song, S., Sjöström, P.J., Reigl, M., Nelson, S. & Chklovskii, D.B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat. Neurosci. 9, 534–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Perin, R., Berger, T.K. & Markram, H. A synaptic organizing principle for cortical neuronal groups. Proc. Natl. Acad. Sci. USA 108, 5419–5424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amit, D.J. The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav. Brain Sci. 18, 617 (1995).

    Article  Google Scholar 

  17. Amit, D.J. & Brunel, N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7, 237–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Fuster, J.M. & Alexander, G.E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

    Article  CAS  PubMed  Google Scholar 

  19. Miyashita, Y. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335, 817–820 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Funahashi, S., Bruce, C.J. & Goldman-Rakic, P.S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Romo, R., Brody, C.D., Hernández, A. & Lemus, L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399, 470–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Abeles, M. Corticonics (Cambridge Univ. Press, 1991).

  23. Goldman, M.S. Memory without feedback in a neural network. Neuron 61, 621–634 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harvey, C.D., Coen, P. & Tank, D.W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pfeiffer, B.E. & Foster, D.J. Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science 349, 180–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Gardner, E.J. The phase space of interactions in neural network models. J. Phys. Math. Gen. 21, 257–270 (1988).

    Article  Google Scholar 

  27. Fino, E. & Yuste, R. Dense inhibitory connectivity in neocortex. Neuron 69, 1188–1203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hofer, S.B. et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat. Neurosci. 14, 1045–1052 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mézard, M., Parisi, G. & Virasoro, M.A. Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

  30. Rosenblatt, F. Principles of Neurodynamics (Spartan, New York, 1962).

  31. Clopath, C., Nadal, J.P. & Brunel, N. Storage of correlated patterns in standard and bistable Purkinje cell models. PLoS Comput. Biol. 8, e1002448 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brunel, N., Hakim, V., Isope, P., Nadal, J.P. & Barbour, B. Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 43, 745–757 (2004).

    CAS  PubMed  Google Scholar 

  33. Chapeton, J., Fares, T., LaSota, D. & Stepanyants, A. Efficient associative memory storage in cortical circuits of inhibitory and excitatory neurons. Proc. Natl. Acad. Sci. USA 109, E3614–E3622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Markram, H. A network of tufted layer 5 pyramidal neurons. Cereb. Cortex 7, 523–533 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Gardner, E.J., Gutfreund, H. & Yekutieli, I. The phase space of interactions in neural network models with definite symmetry. J. Phys. Math. Gen. 22, 1995–2008 (1989).

    Article  Google Scholar 

  36. Alemi, A., Baldassi, C., Brunel, N. & Zecchina, R. A three-threshold learning rule approaches the maximal capacity of recurrent neural networks. PLoS Comput. Biol. 11, e1004439 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yoshimura, Y., Dantzker, J.L.M. & Callaway, E.M. Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Bathellier, B., Ushakova, L. & Rumpel, S. Discrete neocortical dynamics predict behavioral categorization of sounds. Neuron 76, 435–449 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Fuster, J.M. & Jervey, J.P. Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212, 952–955 (1981).

    Article  CAS  PubMed  Google Scholar 

  40. Nakamura, K. & Kubota, K. Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task. J. Neurophysiol. 74, 162–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, Y.C., Bultje, R.S., Wang, X. & Shi, S.H. Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature 458, 501–504 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Clopath, C. & Brunel, N. Optimal properties of analog perceptrons with excitatory weights. PLoS Comput. Biol. 9, e1002919 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Clopath, C., Büsing, L., Vasilaki, E. & Gerstner, W. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat. Neurosci. 13, 344–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Kasthuri, N. et al. Saturated reconstruction of a volume of neocortex. Cell 162, 648–661 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Bourgeois, J.P. & Rakic, P. Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J. Neurosci. 13, 2801–2820 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I warmly thank J. Sjöström for providing his data, and Y. Amit, C. Baldassi, B. Barbour, V. Hakim, D. Marti, G. Mongillo, S. Ostojic, A. Roxin, J. Sjöström and R. Zecchina for discussions and/or comments on previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Brunel.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Note (PDF 654 kb)

Supplementary Methods Checklist (PDF 348 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brunel, N. Is cortical connectivity optimized for storing information?. Nat Neurosci 19, 749–755 (2016). https://doi.org/10.1038/nn.4286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4286

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing