Abstract
Simultaneous recordings from large neural populations are becoming increasingly common. An important feature of population activity is the trial-to-trial correlated fluctuation of spike train outputs from recorded neuron pairs. Similar to the firing rate of single neurons, correlated activity can be modulated by a number of factors, from changes in arousal and attentional state to learning and task engagement. However, the physiological mechanisms that underlie these changes are not fully understood. We review recent theoretical results that identify three separate mechanisms that modulate spike train correlations: changes in input correlations, internal fluctuations and the transfer function of single neurons. We first examine these mechanisms in feedforward pathways and then show how the same approach can explain the modulation of correlations in recurrent networks. Such mechanistic constraints on the modulation of population activity will be important in statistical analyses of high-dimensional neural data.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ganmor, E., Segev, R. & Schneidman, E. A thesaurus for a neural population code. eLife 4, e06134 (2015).
Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).
Beck, J.M. et al. Probabilistic population codes for Bayesian decision making. Neuron 60, 1142–1152 (2008).
Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).
Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015).
Sherman, S.M. & Guillery, R.W. On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc. Natl. Acad. Sci. USA 95, 7121–7126 (1998).
Pillow, J.W. et al. Spatio-temporal correlations and visual signaling in a complete neuronal population. Nature 454, 995–999 (2008).
Cunningham, J.P. & Yu, B.M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).
Goris, R.L., Movshon, J.A. & Simoncelli, E.P. Partitioning neuronal variability. Nat. Neurosci. 17, 858–865 (2014).
Ecker, A.S. et al. State dependence of noise correlations in macaque primary visual cortex. Neuron 82, 235–248 (2014).
Lin, I.C., Okun, M., Carandini, M. & Harris, K.D. The Nature of shared cortical variability. Neuron 87, 644–656 (2015).
Ledoit, O. & Wolf, M. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Anal. 88, 365–411 (2004).
Yatsenko, D. et al. Improved estimation and interpretation of correlations in neural circuits. PLoS Comput. Biol. 11, e1004083 (2015).
Stevenson, I.H. & Kording, K.P. How advances in neural recording affect data analysis. Nat. Neurosci. 14, 139–142 (2011).
Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).
Ferster, D. & Miller, K.D. Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23, 441–471 (2000).
Ben-Yishai, R., Bar-Or, R.L. & Sompolinsky, H. Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA 92, 3844–3848 (1995).
Sompolinsky, H. & Shapley, R. New perspectives on the mechanisms for orientation selectivity. Curr. Opin. Neurobiol. 7, 514–522 (1997).
Ringach, D.L., Hawken, M.J. & Shapley, R. Dynamics of orientation tuning in macaque primary visual cortex. Nature 387, 281–284 (1997).
Priebe, N.J. & Ferster, D. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57, 482–497 (2008).
Bruno, R.M. & Simons, D.J. Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. J. Neurosci. 22, 10966–10975 (2002).
Liu, B.H., Wu, G.K., Arbuckle, R., Tao, H.W. & Zhang, L.I. Defining cortical frequency tuning with recurrent excitatory circuitry. Nat. Neurosci. 10, 1594–1600 (2007).
Barak, O. & Tsodyks, M. Working models of working memory. Curr. Opin. Neurobiol. 25, 20–24 (2014).
Giocomo, L.M., Moser, M.B. & Moser, E.I. Computational models of grid cells. Neuron 71, 589–603 (2011).
Cohen, M.R. & Kohn, A. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811–819 (2011).
Averbeck, B.B., Latham, P.E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).
Ecker, A.S., Berens, P., Tolias, A.S. & Bethge, M. The effect of noise correlations in populations of diversely tuned neurons. J. Neurosci. 31, 14272–14283 (2011).
Moreno-Bote, R. et al. Information-limiting correlations. Nat. Neurosci. 17, 1410–1417 (2014).
Hu, Y., Zylberberg, J. & Shea-Brown, E. The sign rule and beyond: boundary effects, flexibility and noise correlations in neural population codes. PLoS Comput. Biol. 10, e1003469 (2014).
Shadlen, M.N. & Newsome, W.T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).
Rosenbaum, R., Trousdale, J. & Josić, K. The effects of pooling on spike train correlations. Front. Neurosci. 5, 58 (2011).
Renart, A. et al. The asynchronous state in cortical circuits. Science 327, 587–590 (2010).
Pernice, V., Staude, B., Cardanobile, S. & Rotter, S. How structure determines correlations in neuronal networks. PLoS Comput. Biol. 7, e1002059 (2011).
Trousdale, J., Hu, Y., Shea-Brown, E. & Josić, K. Impact of network structure and cellular response on spike time correlations. PLoS Comput. Biol. 8, e1002408 (2012).
Helias, M., Tetzlaff, T. & Diesmann, M. The correlation structure of local neuronal networks intrinsically results from recurrent dynamics. PLoS Comput. Biol. 10, e1003428 (2014).
Wimmer, K. et al. Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nat. Commun. 6, 6177 (2015).
de la Rocha, J., Doiron, B., Shea-Brown, E., Josić, K. & Reyes, A. Correlation between neural spike trains increases with firing rate. Nature 448, 802–806 (2007).
Shea-Brown, E., Josić, K., de la Rocha, J. & Doiron, B. Correlation and synchrony transfer in integrate-and-fire neurons: basic properties and consequences for coding. Phys. Rev. Lett. 100, 108102 (2008).
Tchumatchenko, T., Malyshev, A., Geisel, T., Volgushev, M. & Wolf, F. Correlations and synchrony in threshold neuron models. Phys. Rev. Lett. 104, 058102 (2010).
Churchland, M.M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).
Harris, K.D. & Thiele, A. Cortical state and attention. Nat. Rev. Neurosci. 12, 509–523 (2011).
McGinley, M.J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).
Eggermann, E., Kremer, Y., Crochet, S. & Petersen, C.C. Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell Rep. 9, 1654–1660 (2014).
Bair, W., Zohary, E. & Newsome, W.T. Correlated firing in macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21, 1676–1697 (2001).
Schulz, D.P.A., Sahani, M. & Carandini, M. Five key factors determining pairwise correlations in visual cortex. J. Neurophysiol. 114, 1022–1033 (2015).
Ecker, A.S. et al. Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587 (2010).
Hansen, B.J., Chelaru, M.I. & Dragoi, V. Correlated variability in laminar cortical circuits. Neuron 76, 590–602 (2012).
Smith, M.A. & Kohn, A. Spatial and temporal scales of neuronal correlation in primary visual cortex. J. Neurosci. 28, 12591–12603 (2008).
Gururangan, S.S., Sadovsky, A.J. & MacLean, J.N. Analysis of graph invariants in functional neocortical circuitry reveals generalized features common to three areas of sensory cortex. PLoS Comput. Biol. 10, e1003710 (2014).
Brunel, N. & Hakim, V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671 (1999).
Lindner, B. & Schimansky-Geier, L. Transmission of noise coded versus additive signals through a neuronal ensemble. Phys. Rev. Lett. 86, 2934–2937 (2001).
White, J.A., Rubinstein, J.T. & Kay, A.R. Channel noise in neurons. Trends Neurosci. 23, 131–137 (2000).
Branco, T. & Staras, K. The probability of neurotransmitter release: variability and feedback control at single synapses. Nat. Rev. Neurosci. 10, 373–383 (2009).
Carandini, M. Amplification of trial-to-trial response variability by neurons in visual cortex. PLoS Biol. 2, e264 (2004).
Lee, S.H. & Dan, Y. Neuromodulation of brain states. Neuron 76, 209–222 (2012).
Mochol, G., Hermoso-Mendizabal, A., Sakata, S., Harris, K.D. & de la Rocha, J. Stochastic transitions into silence cause noise correlations in cortical circuits. Proc. Natl. Acad. Sci. USA 112, 3529–3534 (2015).
Okun, M. & Lampl, I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. Neurosci. 11, 535–537 (2008).
Haider, B., Duque, A., Hasenstaub, A.R. & McCormick, D.A. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535–4545 (2006).
Graupner, M. & Reyes, A.D. Synaptic input correlations leading to membrane potential decorrelation of spontaneous activity in cortex. J. Neurosci. 33, 15075–15085 (2013).
Miller, K.D., Pinto, D.J. & Simons, D.J. Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr. Opin. Neurobiol. 11, 488–497 (2001).
Berman, N.J. & Maler, L. Inhibition evoked from primary afferents in the electrosensory lateral line lobe of the weakly electric fish (Apteronotus leptorhynchus). J. Neurophysiol. 80, 3173–3196 (1998).
Wehr, M. & Zador, A.M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003).
Priebe, N.J. & Ferster, D. Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron 45, 133–145 (2005).
Middleton, J.W., Omar, C., Doiron, B. & Simons, D.J. Neural correlation is stimulus modulated by feedforward inhibitory circuitry. J. Neurosci. 32, 506–518 (2012).
Ly, C., Middleton, J.W. & Doiron, B. Cellular and circuit mechanisms maintain low spike co-variability and enhance population coding in somatosensory cortex. Front. Comput. Neurosci. 6, 7 (2012).
Litwin-Kumar, A., Chacron, M.J. & Doiron, B. The spatial structure of stimuli shapes the timescale of correlations in population spiking activity. PLoS Comput. Biol. 8, e1002667 (2012).
Simmonds, B. & Chacron, M.J. Activation of parallel fiber feedback by spatially diffuse stimuli reduces signal and noise correlations via independent mechanisms in a cerebellum-like structure. PLoS Comput. Biol. 11, e1004034 (2015).
van Vreeswijk, C. & Sompolinsky, H. Chaotic balanced state in a model of cortical circuits. Neural Comput. 10, 1321–1371 (1998).
Tetzlaff, T., Helias, M., Einevoll, G.T. & Diesmann, M. Decorrelation of neural-network activity by inhibitory feedback. PLoS Comput. Biol. 8, e1002596 (2012).
Parga, N. Towards a self-consistent description of irregular and asynchronous cortical activity. J. Stat. Mech. 2013, P03010 (2013).
Vere-Jones, D. Simple stochastic models for the release of quanta of transmitter from a nerve terminal. Aust. J. Stat. 8, 53–63 (1966).
Tsodyks, M., Pawelzik, K. & Markram, H. Neural networks with dynamic synapses. Neural Comput. 10, 821–835 (1998).
Fuhrmann, G., Segev, I., Markram, H. & Tsodyks, M. Coding of temporal information by activity-dependent synapses. J. Neurophysiol. 87, 140–148 (2002).
de la Rocha, J. & Parga, N. Short-term synaptic depression causes a non-monotonic response to correlated stimuli. J. Neurosci. 25, 8416–8431 (2005).
Rosenbaum, R., Rubin, J. & Doiron, B. Short-term synaptic depression imposes a frequency dependent filter on synaptic information transfer. PLoS Comput. Biol. 8, e1002557 (2012).
Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).
Goldman, M.S. Enhancement of information transmission efficiency by synaptic failures. Neural Comput. 16, 1137–1162 (2004).
Rosenbaum, R., Rubin, J.E. & Doiron, B. Short-term synaptic depression and stochastic vesicle dynamics reduce and shape neuronal correlations. J. Neurophysiol. 109, 475–484 (2013).
Bird, A.D. & Richardson, M.J. Long-term plasticity determines the postsynaptic response to correlated afferents with multivesicular short-term synaptic depression. Front. Comput. Neurosci. 8, 2 (2014).
Cecchi, G.A. et al. Noise in neurons is message dependent. Proc. Natl. Acad. Sci. USA 97, 5557–5561 (2000).
Faisal, A.A., Selen, L.P. & Wolpert, D.M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).
Rubinstein, J.T. Threshold fluctuations in an N sodium channel model of the node of Ranvier. Biophys. J. 68, 779–785 (1995).
Gal, A. et al. Dynamics of excitability over extended timescales in cultured cortical neurons. J. Neurosci. 30, 16332–16342 (2010).
Hô, N. & Destexhe, A. Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J. Neurophysiol. 84, 1488–1496 (2000).
Doiron, B., Longtin, A., Berman, N. & Maler, L. Subtractive and divisive inhibition: effect of voltage-dependent inhibitory conductances and noise. Neural Comput. 13, 227–248 (2001).
Hansel, D. & van Vreeswijk, C. How noise contributes to contrast invariance of orientation tuning in cat visual cortex. J. Neurosci. 22, 5118–5128 (2002).
Prescott, S.A. & De Koninck, Y. Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc. Natl. Acad. Sci. USA 100, 2076–2081 (2003).
Chance, F.S., Abbott, L.F. & Reyes, A.D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002).
Litwin-Kumar, A., Oswald, A.M., Urban, N.N. & Doiron, B. Balanced synaptic input shapes the correlation between neural spike trains. PLoS Comput. Biol. 7, e1002305 (2011).
Cardin, J.A., Palmer, L.A. & Contreras, D. Cellular mechanisms underlying stimulus-dependent gain modulation in primary visual cortex neurons in vivo. Neuron 59, 150–160 (2008).
Ginzburg, I. & Sompolinsky, H. Theory of correlations in stochastic neural networks. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50, 3171–3191 (1994).
Moreno-Bote, R. & Parga, N. Auto- and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses. Phys. Rev. Lett. 96, 028101 (2006).
Rosenbaum, R. & Josić, K. Mechanisms that modulate the transfer of spiking correlations. Neural Comput. 23, 1261–1305 (2011).
Kruscha, A. & Lindner, B. Spike-count distribution in a neuronal population under weak common stimulation. Phys. Rev. E 92, 052817 (2015).
Lyamzin, D.R. et al. Nonlinear transfer of signal and noise correlations in cortical networks. J. Neurosci. 35, 8065–8080 (2015).
Cohen, M.R. & Maunsell, J.H. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600 (2009).
Galán, R.F., Fourcaud-Trocmé, N., Ermentrout, G.B. & Urban, N.N. Correlation-induced synchronization of oscillations in olfactory bulb neurons. J. Neurosci. 26, 3646–3655 (2006).
Barreiro, A.K., Shea-Brown, E. & Thilo, E.L. Time scales of spike-train correlation for neural oscillators with common drive. Phys. Rev. E 81, 011916 (2010).
Abouzeid, A. & Ermentrout, B. Correlation transfer in stochastically driven neural oscillators over long and short time scales. Phys. Rev. E 84, 061914 (2011).
Hong, S., Ratté, S., Prescott, S.A. & De Schutter, E. Single neuron firing properties impact correlation-based population coding. J. Neurosci. 32, 1413–1428 (2012).
Ocker, G.K. & Doiron, B. Kv7 channels regulate pairwise spiking covariability in health and disease. J. Neurophysiol. 112, 340–352 (2014).
Burak, Y., Lewallen, S. & Sompolinsky, H. Stimulus-dependent correlations in threshold-crossing spiking neurons. Neural Comput. 21, 2269–2308 (2009).
Markowitz, D.A., Collman, F., Brody, C.D., Hopfield, J.J. & Tank, D.W. Rate-specific synchrony: using noisy oscillations to detect equally active neurons. Proc. Natl. Acad. Sci. USA 105, 8422–8427 (2008).
Zhou, P., Burton, S.D., Urban, N.N. & Ermentrout, G.B. Impact of neuronal heterogeneity on correlated colored noise-induced synchronization. Front. Comput. Neurosci. 7, 113 (2013).
Silver, R.A. Neuronal arithmetic. Nat. Rev. Neurosci. 11, 474–489 (2010).
Kass, R.E. & Ventura, V. Spike count correlation increases with length of time interval in the presence of trial-to-trial variation. Neural Comput. 18, 2583–2591 (2006).
Ermentrout, B. Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353 (1998).
Vogels, T.P., Rajan, K. & Abbott, L.F. Neural network dynamics. Annu. Rev. Neurosci. 28, 357–376 (2005).
Gerstner, W., Kistler, W.M., Naud, R. & Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (Cambridge University Press, 2014).
Kopell, N., Ermentrout, G.B., Whittington, M.A. & Traub, R.D. Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. USA 97, 1867–1872 (2000).
Brunel, N. & Wang, X.J. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J. Neurophysiol. 90, 415–430 (2003).
Hertz, J. Cross-correlations in high-conductance states of a model cortical network. Neural Comput. 22, 427–447 (2010).
Bujan, A.F., Aertsen, A. & Kumar, A. Role of input correlations in shaping the variability and noise correlations of evoked activity in the neocortex. J. Neurosci. 35, 8611–8625 (2015).
Litwin-Kumar, A. & Doiron, B. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci. 15, 1498–1505 (2012).
Doiron, B. & Litwin-Kumar, A. Balanced neural architecture and the idling brain. Front. Comput. Neurosci. 8, 56 (2014).
Schaub, M.T., Billeh, Y.N., Anastassiou, C.A., Koch, C. & Barahona, M. Emergence of slow-switching assemblies in structured neuronal networks. PLoS Comput. Biol. 11, e1004196 (2015).
Keane, A. & Gong, P. Propagating waves can explain irregular neural dynamics. J. Neurosci. 35, 1591–1605 (2015).
Kriener, B., Helias, M., Aertsen, A. & Rotter, S. Correlations in spiking neuronal networks with distance dependent connections. J. Comput. Neurosci. 27, 177–200 (2009).
Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011).
Kelly, R.C., Smith, M.A., Kass, R.E. & Lee, T.S. Local field potentials indicate network state and account for neuronal response variability. J. Comput. Neurosci. 29, 567–579 (2010).
Doiron, B., Lindner, B., Longtin, A., Maler, L. & Bastian, J. Oscillatory activity in electrosensory neurons increases with the spatial correlation of the stochastic input stimulus. Phys. Rev. Lett. 93, 048101 (2004).
Lindner, B., Doiron, B. & Longtin, A. Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback. Phys. Rev. E 72, 061919 (2005).
Polk, A., Litwin-Kumar, A. & Doiron, B. Correlated neural variability in persistent state networks. Proc. Natl. Acad. Sci. USA 109, 6295–6300 (2012).
Ostojic, S., Brunel, N. & Hakim, V. How connectivity, background activity and synaptic properties shape the cross-correlation between spike trains. J. Neurosci. 29, 10234–10253 (2009).
Ostojic, S. Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nat. Neurosci. 17, 594–600 (2014).
Harish, O. & Hansel, D. Asynchronous rate chaos in spiking neuronal circuits. PLoS Comput. Biol. 11, e1004266 (2015).
Luo, L., Callaway, E.M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).
Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).
Gu, Y. et al. Perceptual learning reduces interneuronal correlations in macaque visual cortex. Neuron 71, 750–761 (2011).
Romo, R., Hernández, A., Zainos, A. & Salinas, E. Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38, 649–657 (2003).
Riehle, A., Grün, S., Diesmann, M. & Aertsen, A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278, 1950–1953 (1997).
Chacron, M.J. & Bastian, J. Population coding by electrosensory neurons. J. Neurophysiol. 99, 1825–1835 (2008).
Mitchell, J.F., Sundberg, K.A. & Reynolds, J.H. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63, 879–888 (2009).
Ruff, D.A. & Cohen, M.R. Attention can either increase or decrease spike count correlations in visual cortex. Nat. Neurosci. 17, 1591–1597 (2014).
Gregoriou, G.G., Rossi, A.F., Ungerleider, L.G. & Desimone, R. Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nat. Neurosci. 17, 1003–1011 (2014).
Gutnisky, D.A. & Dragoi, V. Adaptive coding of visual information in neural populations. Nature 452, 220–224 (2008).
Snyder, A.C., Morais, M.J., Kohn, A. & Smith, M.A. Correlations in V1 are reduced by stimulation outside the receptive field. J. Neurosci. 34, 11222–11227 (2014).
Herrero, J.L., Gieselmann, M.A., Sanayei, M. & Thiele, A. Attention-induced variance and noise correlation reduction in macaque V1 is mediated by NMDA receptors. Neuron 78, 729–739 (2013).
Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J.A. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86, 740–754 (2015).
Reimer, J. et al. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84, 355–362 (2014).
Erisken, S. et al. Effects of locomotion extend throughout the mouse early visual system. Curr. Biol. 24, 2899–2907 (2014).
Downer, J.D., Niwa, M. & Sutter, M.L. Task engagement selectively modulates neural correlations in primary auditory cortex. J. Neurosci. 35, 7565–7574 (2015).
Qi, X.L. & Constantinidis, C. Correlated discharges in the primate prefrontal cortex before and after working memory training. Eur. J. Neurosci. 36, 3538–3548 (2012).
Cohen, M.R. & Newsome, W.T. Context-dependent changes in functional circuitry in visual area MT. Neuron 60, 162–173 (2008).
Miura, K., Mainen, Z.F. & Uchida, N. Odor representations in olfactory cortex: distributed rate coding and decorrelated population activity. Neuron 74, 1087–1098 (2012).
Jeanne, J.M., Sharpee, T.O. & Gentner, T.Q. Associative learning enhances population coding by inverting interneuronal correlation patterns. Neuron 78, 352–363 (2013).
Biederlack, J. et al. Brightness induction: rate enhancement and neuronal synchronization as complementary codes. Neuron 52, 1073–1083 (2006).
Yu, J. & Ferster, D. Membrane potential synchrony in primary visual cortex during sensory stimulation. Neuron 68, 1187–1201 (2010).
Poulet, J.F. & Petersen, C.C. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008).
Tan, A.Y., Chen, Y., Scholl, B., Seidemann, E. & Priebe, N.J. Sensory stimulation shifts visual cortex from synchronous to asynchronous states. Nature 509, 226–229 (2014).
Acknowledgements
This work was funded by National Science Foundation grants NSF-DMS-1313225 (B.D.), NSF-DMS-1517082 (B.D.), NIH-CRCNS R01DC015139-01ZRG1 (B.D.), NSF-DMS-1122094 (K.J.), NSF-DMS-1517629 (K.J.) and NSF-DMS-1517828 (R.R.), National Institute of Health grant NIH:1F32DC014387 (A.L.-K.), a grant from the Simons Foundation collaboration on the global brain (B.D.), and a Simons Foundation fellowship (K.J.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Mathematical Note (PDF 246 kb)
Supplementary Methods Checklist
(PDF 348 kb)
Rights and permissions
About this article
Cite this article
Doiron, B., Litwin-Kumar, A., Rosenbaum, R. et al. The mechanics of state-dependent neural correlations. Nat Neurosci 19, 383–393 (2016). https://doi.org/10.1038/nn.4242
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn.4242
This article is cited by
-
Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons
Nature Communications (2023)
-
Rapid compensatory plasticity revealed by dynamic correlated activity in monkeys in vivo
Nature Neuroscience (2023)
-
Correlated variability in primate superior colliculus depends on functional class
Communications Biology (2023)
-
Priority coding in the visual system
Nature Reviews Neuroscience (2022)
-
Large-scale neural recordings call for new insights to link brain and behavior
Nature Neuroscience (2022)