Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Computational principles of memory

Abstract

The ability to store and later use information is essential for a variety of adaptive behaviors, including integration, learning, generalization, prediction and inference. In this Review, we survey theoretical principles that can allow the brain to construct persistent states for memory. We identify requirements that a memory system must satisfy and analyze existing models and hypothesized biological substrates in light of these requirements. We also highlight open questions, theoretical puzzles and problems shared with computer science and information theory.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Stable states from positive feedback.
Figure 2: Circuit mechanisms for persistent states.
Figure 3: Long-term maintenance of synapse size.

Katie Vicari/Nature Publishing Group

Figure 4: Robustness of persistent activity architectures.
Figure 5: The tradeoff between capacity and robustness.
Figure 6: Complexity cost of storing a continuous variable in a set of well-separated discrete attractors.

References

  1. Pavlov, I.P. Conditioned Reflexes (Oxford University Press, London, 1927).

  2. Carew, T.J., Walters, E.T. & Kandel, E.R. Classical conditioning in a simple withdrawal reflex in Aplysia californica. J. Neurosci. 1, 1426–1437 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rescorla, R.A. & Wagner, A.R. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. in Classical Conditioning: Current Research and Theory (Appleton-Century-Crofts, 1972).

  4. Mackintosh, N.J. The Psychology of Animal Learning (Academic Press, Oxford, 1974).

  5. Vidyasagar, M. A Theory of Learning and Generalization (Springer-Verlag, New York, 2002).

  6. Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Bialek, W., Nemenman, I. & Tishby, N. Predictability, complexity and learning. Neural Comput. 13, 2409–2463 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Robinson, D.A. Integrating with neurons. Annu. Rev. Neurosci. 12, 33–45 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Seung, H.S. How the brain keeps the eyes still. Proc. Natl. Acad. Sci. USA 93, 13339–13344 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112–2126 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kamil, A.C. & Roitblat, H.L. The ecology of foraging behavior: implications for animal learning and memory. Annu. Rev. Psychol. 36, 141–169 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Gold, J.I. & Shadlen, M.N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. James, W. The Principles of Psychology Vol. 1 (Holt, New York, 1890).

  14. Scoville, W.B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tetzlaff, C., Kolodziejski, C., Markelic, I. & Wörgötter, F. Time scales of memory, learning, and plasticity. Biol. Cybern. 106, 715–726 (2012).

    Article  PubMed  Google Scholar 

  16. Bailey, C.H., Kandel, E.R. & Harris, K.M. Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb. Perspect. Biol. 7, a021758 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Koch, C., Rapp, M. & Segev, I. A brief history of time (constants). Cereb. Cortex 6, 93–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Destexhe, A., Mainen, Z.F. & Sejnowski, T.J. Kinetic models of synaptic transmission. Methods Neuronal Model. 2, 1–25 (1998).

    Google Scholar 

  19. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Cambridge, S.B. et al. Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. J. Proteome Res. 10, 5275–5284 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Koch, C. Biophysics of Computation: Information Processing in Single Neurons (Oxford University Press, New York, New York, 1999).

  22. Softky, W.R. & Koch, C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334–350 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shadlen, M.N. & Newsome, W.T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hanus, C. & Schuman, E.M. Proteostasis in complex dendrites. Nat. Rev. Neurosci. 14, 638–648 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948).

    Article  Google Scholar 

  26. MacKay, D. Information Theory, Inference and Learning Algorithms (Cambridge University Press, Cambridge, 2004).

  27. Sreenivasan, S. & Fiete, I. Grid cells generate an analog error-correcting code for singularly precise neural computation. Nat. Neurosci. 14, 1330–1337 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Pereira, J. & Wang, X.-J. A tradeoff between accuracy and flexibility in a working memory circuit endowed with slow feedback mechanisms. Cereb. Cortex 25, 3586–3601 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. McCloskey, M. & Cohen, N.J. Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learn. Motiv. 24, 109–165 (1989).

    Article  Google Scholar 

  30. Fusi, S., Drew, P.J. & Abbott, L.F. Cascade models of synaptically stored memories. Neuron 45, 599–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Lahiri, S. & Ganguli, S. A memory frontier for complex synapses. Adv. Neural Inf. Process. Syst. 26, 1034–1042 (2013).

    Google Scholar 

  32. Fuster, J.M. & Alexander, G.E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

    Article  CAS  PubMed  Google Scholar 

  33. Goldman-Rakic, P.S. Cellular basis of working memory. Neuron 14, 477–485 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Ranganath, C. & D'Esposito, M. Directing the mind's eye: prefrontal, inferior and medial temporal mechanisms for visual working memory. Curr. Opin. Neurobiol. 15, 175–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Bliss, T.V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  36. Cajal, S.R.Y. The Croonian Lecture: La fine structure des centres nerveux. Proc. R. Soc. Lond. 55, 444–468 (1894).

    Article  Google Scholar 

  37. Konorski, J. Conditioned Reflexes and Neuron Organization (Cambridge University Press, Cambridge, 1948).

  38. Hebb, D.O. The Organization of Behavior: a Neuropsychological Theory (New York: Wiley & Sons, 1949).

  39. Takeuchi, T., Duszkiewicz, A.J. & Morris, R.G. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130288 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kandel, E.R., Dudai, Y. & Mayford, M.R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Lorente de Nó, R. Vestibulo-ocular reflex arc. Arch. Neurol. Psychiatry 30, 245–291 (1933).

    Article  Google Scholar 

  42. Eccles, W.H. & Jordan, F.W. Improvements in ionic relays. British patent number: GB 148582 (1918).

  43. von Neumann, J. First Draft of a Report on the EDVAC (University of Pennsylvania, Philadelphia, 1945).

  44. Jacob, B., Ng, S. & Wang, D. Memory Systems: Cache, Dram, Disk (Morgan Kaufmann, 2010).

  45. Lisman, J.E. A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc. Natl. Acad. Sci. USA 82, 3055–3057 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bierman, A. Studies on the effects of structure on the behavior of enzyme systems. Bull. Math. Biophys. 16, 203–257 (1954).

    Article  Google Scholar 

  47. Wilson, H.R. & Cowan, J.D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hopfield, J.J. & Tank, D.W. Computing with neural circuits: a model. Science 233, 625–633 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Little, W. The existence of persistent states in the brain. Math. Biosci. 19, 101–120 (1974).

    Article  Google Scholar 

  50. Ben-Yishai, R., Bar-Or, R.L. & Sompolinsky, H. Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA 92, 3844–3848 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burak, Y. & Fiete, I.R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5, e1000291 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Renart, A., Song, P. & Wang, X.-J. Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38, 473–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Widloski, J. & Fiete, I.R. A model of grid cell development through spatial exploration and spike time-dependent plasticity. Neuron 83, 481–495 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Goldman, M.S., Levine, J.H., Major, G., Tank, D.W. & Seung, H.S. Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cereb. Cortex 13, 1185–1195 (2003).

    Article  PubMed  Google Scholar 

  55. Koulakov, A.A., Raghavachari, S., Kepecs, A. & Lisman, J.E. Model for a robust neural integrator. Nat. Neurosci. 5, 775–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Aksay, E., Gamkrelidze, G., Seung, H.S., Baker, R. & Tank, D.W. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat. Neurosci. 4, 184–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Taube, J.S. & Bassett, J.P. Persistent neural activity in head direction cells. Cereb. Cortex 13, 1162–1172 (2003).

    Article  PubMed  Google Scholar 

  58. Yoon, K. et al. Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat. Neurosci. 16, 1077–1084 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wimmer, K., Nykamp, D.Q., Constantinidis, C. & Compte, A. Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat. Neurosci. 17, 431–439 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Seelig, J.D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ferrell, J.E. Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Cannon, S.C., Robinson, D.A. & Shamma, S. A proposed neural network for the integrator of the oculomotor system. Biol. Cybern. 49, 127–136 (1983).

    Article  CAS  PubMed  Google Scholar 

  63. Song, P. & Wang, X.J. Angular path integration by moving “hill of activity”: a spiking neuron model without recurrent excitation of the head-direction system. J. Neurosci. 25, 1002–1014 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Monod, J. & Jacob, F. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26, 389–401 (1961).

    Article  CAS  PubMed  Google Scholar 

  65. Crick, F. Memory and molecular turnover. Nature 312, 101 (1984).

    Article  CAS  PubMed  Google Scholar 

  66. Lisman, J., Yasuda, R. & Raghavachari, S. Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 13, 169–182 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sanhueza, M. et al. Role of the CaMKII/NMDA receptor complex in the maintenance of synaptic strength. J. Neurosci. 31, 9170–9178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lisman, J. & Raghavachari, S. Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex. Brain Res. 1621, 51–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Zhou, Y. et al. Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning. J. Neurosci. 27, 13843–13853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aslam, N., Kubota, Y., Wells, D. & Shouval, H.Z. Translational switch for long-term maintenance of synaptic plasticity. Mol. Syst. Biol. 5, 284 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Chen, H.X., Otmakhov, N., Strack, S., Colbran, R.J. & Lisman, J.E. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP? J. Neurophysiol. 85, 1368–1376 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Hernandez, A.I. et al. Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory. J. Biol. Chem. 278, 40305–40316 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Sacktor, T.C. How does PKMζ maintain long-term memory? Nat. Rev. Neurosci. 12, 9–15 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Kwapis, J.L. & Helmstetter, F.J. Does PKM(zeta) maintain memory? Brain Res. Bull. 105, 36–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Pastalkova, E. et al. Storage of spatial information by the maintenance mechanism of LTP. Science 313, 1141–1144 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Ogasawara, H. & Kawato, M. The protein kinase Mζ network as a bistable switch to store neuronal memory. BMC Syst. Biol. 4, 181 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jalil, S.J., Sacktor, T.C. & Shouval, H.Z. Atypical PKCs in memory maintenance: the roles of feedback and redundancy. Learn. Mem. 22, 344–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Volk, L.J., Bachman, J.L., Johnson, R., Yu, Y. & Huganir, R.L. PKM-ζ is not required for hippocampal synaptic plasticity, learning and memory. Nature 493, 420–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Lee, A.M. et al. Prkcz null mice show normal learning and memory. Nature 493, 416–419 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hsieh, K., Tsokas, P. & Sacktor, T. Compensation for PKMζ function in spatial long-term memory in mutant mice. Soc. Neurosci. Abstr. 573.01 (2015).

  81. Tsokas, P. & Sacktor, T. Compensation for PKMζ function in late-LTP in mutant mice. Soc. Neurosci. Abstr. 573.15 (2015).

  82. Bourne, J.N. & Harris, K.M. Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus 21, 354–373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meyer, D., Bonhoeffer, T. & Scheuss, V. Balance and stability of synaptic structures during synaptic plasticity. Neuron 82, 430–443 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Bartol, T.M. et al. Nanoconnectomic upper bound on the variability of synaptic plasticity. eLife 4, e10778 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lim, S. & Goldman, M.S. Balanced cortical microcircuitry for maintaining information in working memory. Nat. Neurosci. 16, 1306–1314 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Boerlin, M., Machens, C.K. & Denève, S. Predictive coding of dynamical variables in balanced spiking networks. PLoS Comput. Biol. 9, e1003258 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wiener, N. Cybernetics or Control and Communication in the Animal and the Machine (MIT Press, 1961).

  88. Sontag, E.D. Mathematical Control Theory: Deterministic Finite Dimensional Systems (Springer Science & Business Media, Berlin, 2013).

  89. Liddell, E.G.T. & Sherrington, C. Reflexes in response to stretch (myotatic reflexes). Proc. R. Soc. Lond. Biol. 96, 212–242 (1924).

    Article  Google Scholar 

  90. Alon, U., Surette, M.G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560 (2002).

    Article  PubMed  Google Scholar 

  93. White, O.L., Lee, D.D. & Sompolinsky, H. Short-term memory in orthogonal neural networks. Phys. Rev. Lett. 92, 148102 (2004).

    Article  PubMed  CAS  Google Scholar 

  94. Eckert, J.P. Jr. A survey of digital computer memory systems. Proc. IRE 41, 1393–1406 (1953).

    Article  Google Scholar 

  95. Abeles, M. et al. Local Cortical Circuits (Springer, Berlin, 1982).

  96. Long, M.A., Jin, D.Z. & Fee, M.S. Support for a synaptic chain model of neuronal sequence generation. Nature 468, 394–399 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ganguli, S., Huh, D. & Sompolinsky, H. Memory traces in dynamical systems. Proc. Natl. Acad. Sci. USA 105, 18970–18975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goldman, M.S. Memory without feedback in a neural network. Neuron 61, 621–634 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Murphy, B.K. & Miller, K.D. Balanced amplification: a new mechanism of selective amplification of neural activity patterns. Neuron 61, 635–648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sompolinsky, H., Crisanti, A. & Sommers, H.J. Chaos in random neural networks. Phys. Rev. Lett. 61, 259–262 (1988).

    Article  CAS  PubMed  Google Scholar 

  103. Sprott, J.C. Chaotic dynamics on large networks. Chaos 18, 023135 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Laurent, G. Olfactory network dynamics and the coding of multidimensional signals. Nat. Rev. Neurosci. 3, 884–895 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Hahnloser, R.H.R., Kozhevnikov, A.A. & Fee, M.S. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419, 65–70 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Shen, L. Neural integration by short term potentiation. Biol. Cybern. 61, 319–325 (1989).

    Article  CAS  PubMed  Google Scholar 

  107. Mongillo, G., Barak, O. & Tsodyks, M. Synaptic theory of working memory. Science 319, 1543–1546 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Egorov, A.V., Hamam, B.N., Fransén, E., Hasselmo, M.E. & Alonso, A.A. Graded persistent activity in entorhinal cortex neurons. Nature 420, 173–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Aksay, E. et al. Functional dissection of circuitry in a neural integrator. Nat. Neurosci. 10, 494–504 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kalmbach, B.E., Chitwood, R.A., Dembrow, N.C. & Johnston, D. Dendritic generation of mGluR-mediated slow afterdepolarization in layer 5 neurons of prefrontal cortex. J. Neurosci. 33, 13518–13532 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Toyama, B.H. et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154, 971–982 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Si, K., Lindquist, S. & Kandel, E.R. A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115, 879–891 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Stephan, J.S. et al. The CPEB3 protein is a functional prion that interacts with the actin cytoskeleton. Cell Rep. 11, 1772–1785 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Fioriti, L. et al. The persistence of hippocampal-based memory requires protein synthesis mediated by the prion-like protein CPEB3. Neuron 86, 1433–1448 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. McEvoy, M. et al. Cytoplasmic polyadenylation element binding protein 1–mediated mRNA translation in Purkinje neurons is required for cerebellar long-term depression and motor coordination. J. Neurosci. 27, 6400–6411 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Miller, P. & Wang, X.-J. Stability of discrete memory states to stochastic fluctuations in neuronal systems. Chaos 16, 026109 (2006).

    Article  PubMed  CAS  Google Scholar 

  117. Fiete, I., Schwab, D.J. & Tran, N.M. A binary Hopfield network with 1/log(n) information rate and applications to grid cell decoding. Preprint at http://arxiv.org/abs/1407.6029 (2014).

  118. Strogatz, S.H. Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Westview Press, 2014).

  119. Compte, A., Brunel, N., Goldman-Rakic, P.S. & Wang, X.-J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10, 910–923 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Burak, Y. & Fiete, I.R. Fundamental limits on persistent activity in networks of noisy neurons. Proc. Natl. Acad. Sci. USA 109, 17645–17650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lim, S. & Goldman, M.S. Noise tolerance of attractor and feedforward memory models. Neural Comput. 24, 332–390 (2012).

    Article  PubMed  Google Scholar 

  122. Kilpatrick, Z.P., Ermentrout, B. & Doiron, B. Optimizing working memory with heterogeneity of recurrent cortical excitation. J. Neurosci. 33, 18999–19011 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Monteforte, M. & Wolf, F. Dynamic flux tubes form reservoirs of stability in neuronal circuits. Phys. Rev. X 2, 041007 (2012).

    CAS  Google Scholar 

  124. Landauer, T.K. How much do people remember? Some estimates of the quantity of learned information in long-term memory. Cogn. Sci. 10, 477–493 (1986).

    Article  Google Scholar 

  125. Shepard, R.N. Recognition memory for words, sentences, and pictures. J. Verbal Learn. Verbal Behav. 6, 156–163 (1967).

    Article  Google Scholar 

  126. Brady, T.F., Konkle, T., Alvarez, G.A. & Oliva, A. Visual long-term memory has a massive storage capacity for object details. Proc. Natl. Acad. Sci. USA 105, 14325–14329 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Abu-Mostafa, Y.S. & St Jacques, J. Information capacity of the Hopfield model. IEEE Trans. Inf. Theory 31, 461–464 (1985).

    Article  Google Scholar 

  129. Gardner, E. & Derrida, B. Optimal storage properties of neural network models. J. Phys. A 21, 271 (1988).

    Article  Google Scholar 

  130. Amit, D.J., Gutfreund, H. & Sompolinsky, H. Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55, 1530–1533 (1985).

    Article  CAS  PubMed  Google Scholar 

  131. Parisi, G. A memory which forgets. J. Phys. A 19, L617 (1986).

    Article  Google Scholar 

  132. Benna, M.K. & Fusi, S. Computational principles of biological memory. Preprint at <http://arxiv.org/abs/1507.07580> (2015).

  133. Hillar, C., Tran, N. & Koepsell, K. Robust exponential binary pattern storage in Little-Hopfield networks. Preprint at <http://arxiv.org/abs/1206.2081> (2012).

  134. Valiant, L.G. The hippocampus as a stable memory allocator for cortex. Neural Comput. 24, 2873–2899 (2012).

    Article  PubMed  Google Scholar 

  135. Miller, G.A. The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956).

    Article  CAS  PubMed  Google Scholar 

  136. Conway, A.R., Kane, M.J. & Engle, R.W. Working memory capacity and its relation to general intelligence. Trends Cogn. Sci. 7, 547–552 (2003).

    Article  PubMed  Google Scholar 

  137. Barrouillet, P., De Paepe, A. & Langerock, N. Time causes forgetting from working memory. Psychon. Bull. Rev. 19, 87–92 (2012).

    Article  PubMed  Google Scholar 

  138. Lewandowsky, S., Oberauer, K. & Brown, G.D.A. No temporal decay in verbal short-term memory. Trends Cogn. Sci. 13, 120–126 (2009).

    Article  PubMed  Google Scholar 

  139. Hughes, J.R. Absence seizures: a review of recent reports with new concepts. Epilepsy Behav. 15, 404–412 (2009).

    Article  PubMed  Google Scholar 

  140. Mante, V., Sussillo, D., Shenoy, K.V. & Newsome, W.T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Druckmann, S. & Chklovskii, D.B. Neuronal circuits underlying persistent representations despite time varying activity. Curr. Biol. 22, 2095–2103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Emiliani, V., Cohen, A.E., Deisseroth, K. & Häusser, M. All-optical interrogation of neural circuits. J. Neurosci. 35, 13917–13926 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sterzer, P., Kleinschmidt, A. & Rees, G. The neural bases of multistable perception. Trends Cogn. Sci. 13, 310–318 (2009).

    Article  PubMed  Google Scholar 

  144. Colgin, L.L. et al. Attractor-map versus autoassociation based attractor dynamics in the hippocampal network. J. Neurophysiol. 104, 35–50 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Loewenstein, Y., Yanover, U. & Rumpel, S. Predicting the dynamics of network connectivity in the neocortex. J. Neurosci. 35, 12535–12544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Dudai, Y. The restless engram: consolidations never end. Annu. Rev. Neurosci. 35, 227–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lisman, J. The challenge of understanding the brain: where we stand in 2015. Neuron 86, 864–882 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jonides, J. et al. The mind and brain of short-term memory. Annu. Rev. Psychol. 59, 193–224 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Harris and K. Raab-Graham for discussions on subcellular substrates of memory. We are grateful to S. Fusi, J. Lisman, J. Murray, X.-J. Wang, and to A. Das, I. Kanitscheider, B. Kriener and J. Widloski of the Fiete group for comments on the manuscript. This work was funded in part by grants from the Simons Collaboration on the Global Brain, the ONR-Young Investigator Program (N000141310529), and the McKnight Foundation to I.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ila Fiete.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaudhuri, R., Fiete, I. Computational principles of memory. Nat Neurosci 19, 394–403 (2016). https://doi.org/10.1038/nn.4237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing