Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bidirectional GABAergic control of action potential firing in newborn hippocampal granule cells

Abstract

Newly generated young neurons in the adult hippocampus receive GABAergic synaptic inputs, which are crucial for activity-dependent survival and functional maturation between 1–3 weeks after mitosis. We found synaptically driven action potential (AP) firing in these newborn young cells in adult mice. Although glutamatergic synaptic inputs remained subthreshold, activation of GABAergic synaptic inputs depolarized young neurons and reliably evoked APs. Furthermore, pairing of subthreshold excitatory postsynaptic potentials or somatic current injection with brief bursts of GABAergic inputs revealed efficient GABAergic excitation at conductances of 1.5 nS, corresponding to the activity of only three or four interneurons. Stronger GABAergic inputs (>4 nS) effectively blocked AP firing via shunting inhibition, which might be important to dynamically control spiking output in both directions. Taken together, GABAergic interneurons differentially recruit newborn young granule cells by supporting either AP generation or shunting inhibition dependent on hippocampal network activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GABAergic depolarization correlates with DCX-expression in hippocampal granule cells.
Figure 2: Bidirectional GABAergic control of action potential firing in immature hippocampal granule cells.
Figure 3: Efficient temporal integration of EPSPs and GPSPs.
Figure 4: GABA-induced excitation and inhibition of AP firing.
Figure 5: High GABAergic activity generates powerful shunting inhibition.
Figure 6: Dynamic shift from GABAergic excitation to shunting inhibition.

Similar content being viewed by others

References

  1. Ben-Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O. & Gaiarsa, J.L. GABAA, NMDA and AMPA receptors: a developmentally regulated 'ménage à trois'. Trends Neurosci. 20, 523–529 (1997).

    CAS  PubMed  Google Scholar 

  2. Leinekugel, X., Medina, I., Khalilov, I., Ben-Ari, Y. & Khazipov, R. Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron 18, 243–255 (1997).

    CAS  PubMed  Google Scholar 

  3. Gao, X.B. & van den Pol, A.N. GABA, not glutamate, a primary transmitter driving action potentials in developing hypothalamic neurons. J. Neurophysiol. 85, 425–434 (2001).

    CAS  PubMed  Google Scholar 

  4. Garaschuk, O., Hanse, E. & Konnerth, A. Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J. Physiol. (Lond.) 507, 219–236 (1998).

    CAS  Google Scholar 

  5. Garaschuk, O., Linn, J., Eilers, J. & Konnerth, A. Large-scale oscillatory calcium waves in the immature cortex. Nat. Neurosci. 3, 452–459 (2000).

    CAS  PubMed  Google Scholar 

  6. Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 (2002).

    CAS  PubMed  Google Scholar 

  7. Tyzio, R., Holmes, G.L., Ben-Ari, Y. & Khazipov, R. Timing of the developmental switch in GABA(A) mediated signaling from excitation to inhibition in CA3 rat hippocampus using gramicidin perforated patch and extracellular recordings. Epilepsia 48 (suppl. 5) 96–105 (2007).

    CAS  PubMed  Google Scholar 

  8. Wang, D.D. & Kriegstein, A.R. Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. Cereb. Cortex 21, 574–587 (2011).

    PubMed  Google Scholar 

  9. Lledo, P.M., Alonso, M. & Grubb, M.S. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 7, 179–193 (2006).

    CAS  PubMed  Google Scholar 

  10. Deng, W., Aimone, J.B. & Gage, F.H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci. 11, 339–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spalding, K.L. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Karten, Y.J., Jones, M.A., Jeurling, S.I. & Cameron, H.A. GABAergic signaling in young granule cells in the adult rat and mouse dentate gyrus. Hippocampus 16, 312–320 (2006).

    CAS  PubMed  Google Scholar 

  13. Ge, S. et al. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593 (2006).

    CAS  PubMed  Google Scholar 

  14. Chancey, J.H. et al. GABA depolarization is required for experience-dependent synapse unsilencing in adult-born neurons. J. Neurosci. 33, 6614–6622 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tozuka, Y., Fukuda, S., Namba, T., Seki, T. & Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47, 803–815 (2005).

    CAS  PubMed  Google Scholar 

  16. Song, J. et al. Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat. Neurosci. 16, 1728–1730 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Espósito, M.S. et al. Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J. Neurosci. 25, 10074–10086 (2005).

    PubMed  PubMed Central  Google Scholar 

  18. Jagasia, R. et al. GABA-cAMP response element–binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J. Neurosci. 29, 7966–7977 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, H., Lee, D., Park, C.H., Ho, W.K. & Lee, S.H. GABA mediates the network activity-dependent facilitation of axonal outgrowth from the newborn granule cells in the early postnatal rat hippocampus. Eur. J. Neurosci. 36, 2743–2752 (2012).

    PubMed  Google Scholar 

  20. Kim, J.Y. et al. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell 148, 1051–1064 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stocca, G., Schmidt-Hieber, C. & Bischofberger, J. Differential dendritic Ca2+ signalling in young and mature hippocampal granule cells. J. Physiol. (Lond.) 586, 3795–3811 (2008).

    CAS  Google Scholar 

  22. Ge, S., Pradhan, D.A., Ming, G.L. & Song, H. GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci. 30, 1–8 (2007).

    PubMed  Google Scholar 

  23. Overstreet Wadiche, L., Bromberg, D.A., Bensen, A.L. & Westbrook, G.L. GABAergic signaling to newborn neurons in dentate gyrus. J. Neurophysiol. 94, 4528–4532 (2005).

    PubMed  Google Scholar 

  24. Mongiat, L.A., Espósito, M.S., Lombardi, G. & Schinder, A.F. Reliable activation of immature neurons in the adult hippocampus. PLoS One 4, e5320 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Couillard-Despres, S. et al. Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur. J. Neurosci. 24, 1535–1545 (2006).

    PubMed  Google Scholar 

  26. Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–187 2004).

    CAS  PubMed  Google Scholar 

  27. Markwardt, S.J., Dieni, C.V., Wadiche, J.I. & Overstreet-Wadiche, L. Ivy/neurogliaform interneurons coordinate activity in the neurogenic niche. Nat. Neurosci. 14, 1407–1409 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Deshpande, A. et al. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc. Natl. Acad. Sci. USA 110, E1152–E1161 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8, 45–56 (2007).

    CAS  PubMed  Google Scholar 

  30. Fuentealba, P. et al. Expression of COUP-TFII nuclear receptor in restricted GABAergic neuronal populations in the adult rat hippocampus. J. Neurosci. 30, 1595–1609 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Buzsáki, G. & Wang, X.J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. Varga, C. et al. Functional fission of parvalbumin interneuron classes during fast network events. eLife 3, 04006 (2014).

    Google Scholar 

  33. Spampanato, J., Sullivan, R.K., Turpin, F.R., Bartlett, P.F. & Sah, P. Properties of doublecortin expressing neurons in the adult mouse dentate gyrus. PLoS One 7, e41029 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gulledge, A.T. & Stuart, G.J. Excitatory actions of GABA in the cortex. Neuron 37, 299–309 (2003).

    CAS  PubMed  Google Scholar 

  35. Chiang, P.H. et al. GABA is depolarizing in hippocampal dentate granule cells of the adolescent and adult rats. J. Neurosci. 32, 62–67 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sauer, J.F., Strüber, M. & Bartos, M. Interneurons provide circuit-specific depolarization and hyperpolarization. J. Neurosci. 32, 4224–4229 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Freund, T.F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    CAS  PubMed  Google Scholar 

  38. Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).

    CAS  PubMed  Google Scholar 

  39. Somogyi, P., Katona, L., Klausberger, T., Lasztóczi, B. & Viney, T.J. Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus. Phil. Trans. R. Soc. Lond. B 369, 20120518 (2014).

    Google Scholar 

  40. Klausberger, T. GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur. J. Neurosci. 30, 947–957 (2009).

    PubMed  Google Scholar 

  41. Ge, S., Yang, C.H., Hsu, K.S., Ming, G.L. & Song, H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54, 559–566 (2007b).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Konur, S. & Ghosh, A. Calcium signaling and the control of dendritic development. Neuron 46, 401–405 (2005).

    CAS  PubMed  Google Scholar 

  43. Spitzer, N.C. Electrical activity in early neuronal development. Nature 444, 707–712 (2006).

    CAS  PubMed  Google Scholar 

  44. Tashiro, A., Makino, H. & Gage, F.H. Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J. Neurosci. 27, 3252–3259 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tashiro, A., Sandler, V.M., Toni, N., Zhao, C. & Gage, F.H. NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442, 929–933 (2006).

    CAS  PubMed  Google Scholar 

  46. Tronel, S. et al. Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons. Proc. Natl. Acad. Sci. USA 107, 7963–7968 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Piatti, V.C. et al. The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J. Neurosci. 31, 7715–7728 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Toni, N. et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat. Neurosci. 11, 901–907 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gu, Y. et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat. Neurosci. 15, 1700–1706 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakashiba, T. et al. Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149, 188–201 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bischofberger, J., Engel, D., Li, L., Geiger, J.R.P. & Jonas, P. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat. Protoc. 1, 2075–2081 (2006).

    CAS  PubMed  Google Scholar 

  52. Geiger, J.R.P. et al. Patch-clamp recording in brain slices with improved slicer technology. Pflugers Arch. 443, 491–501 (2002).

    CAS  PubMed  Google Scholar 

  53. Zhao, C., Teng, E.M., Summers, R.G. Jr., Ming, G.L. & Gage, F.H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sultan, S., Gebara, E. & Toni, N. Doxycycline increases neurogenesis and reduces microglia in the adult hippocampus. Front. Neurosci. 7 131 (2013).

  55. Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J. Neurosci. 27, 8430–8441 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Aigner and S. Couillard-Despres (Paracelsus Medical University Salzburg, Austria) for originally providing the transgenic DCX-DsRed mice, J. Schulz for programming some of the Python-based data analysis, J. Schulz and L. Li for comments on the manuscript, S. Becherer for histochemical stainings and technical assistance, and M. Schwager for mouse genotyping. This work was supported by the Swiss National Science Foundation (SNSF, Project 31003A_153276).

Author information

Authors and Affiliations

Authors

Contributions

J.B. and S.H. conceived and designed the experiments. S.H. conducted the experiments and analyzed the data. S.S. performed the viral injections. S.S. and N.T. critically reviewed and edited the manuscript. J.B. and S.H. wrote the paper.

Corresponding author

Correspondence to Josef Bischofberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Morphology and firing pattern of DCX+ young and mature hippocampal GCs in slices from the adult mouse brain.

(a) Confocal z-projection of a biocytin-filled (green) newborn granule cell with an input resistance of 9 GΩ. Small images of immunohistochemical stainings show double-labeling with strong DCX expression (red). (b) Ca2+-spike and AP induced by somatic current injection in a 9 GΩ granule cell. Minimal current for AP induction is indicated. (c) Decay after a small hyperpolarization revealed slow membrane time constant (τm = 186 ms, monoexponential fit in red). (d) Same as a for a 3 GΩ granule cell showing slightly advanced dendritic maturation and weaker DCX expression. (e) Firing pattern of the cell in d. (f) Voltage decay shows faster membrane time constant (τm = 94 ms). (g) Morphology of a mature DsRed-DCX- granule cell. (h) Mature firing pattern for the cell in g requires high current injection. (i) Voltage decay after the current pulse revealed a fast τm of 23 ms.

Supplementary Figure 2 Morphology and firing pattern of 2- and 3-week-old virus-labeled granule cells.

Differences in morphology, active and passive properties of granule cells at 2 (a-d) and 3 (e-h) weeks post injection (wpi). (a,e) Confocal z-projection of GFP+ neurons (green). (b,f) Biocytin filled somata (blue) with GFP (green) and DCX expression (red). (c,g) Firing pattern induced by current injection of the 2-wpi (c) and 3-wpi (g) virus-labelled GFP+ neuron shown in b and f, respectively. Minimal current for AP induction is indicated. (d,h) Monoexponential fit of the decay after a small hyperpolarizing current injection.

Supplementary Figure 3 Input resistance and membrane properties of developing granule cells change with cell age.

(a) Semi-logarithmic plot showing that input resistance (Rin) decreases with maturation. Green, individual GFP+ birth-dated granule cells. Black, mean ± s.e.m. of GFP+ neurons. , 1 wpi. ■, 2 wpi. ▲, 3 wpi. ♦, 4 wpi. Red circle (mean ± s.e.m) shows Rin of recorded DCX-DsRed+ young granule cells. Red line indicates the range of the Rin of recorded DCX+ neurons (1.5–18 GΩ) corresponding to 1.5 to 3 weeks post mitosis. (b) Adult-born hippocampal granule cells loose DCX-expression at 3 wpi. (c-f) Semi-logarithmic plots of resting membrane potential (c), membrane time constant (d), threshold current to evoke an AP (e) and AP steepest slope (f) of DsRed+ young (red), DsRed mature (black) and GFP+ birth-dated granule cells (green). Lines represent sigmoidal (c,d,f) or double exponential (e) fits.

Supplementary Figure 4 Gramicidin perforated-patch recordings in a DCX-DsRed+ hippocampal granule cell.

(a) DCX-DsRed+ young granule cells at the inner border of the granule cell layer. GCL, granule cell layer. H, hilus. (b,c) DsRed-fluorescence (b) and IR-DIC image (c) of a young DCX+ neuron in cell-attached mode. (d,e) Lucifer Yellow is restricted to the pipette during perforated-patch configuration (d) but clearly visible in the soma in whole-cell mode (e). (f) Scheme of different recording modes showing the separation of pipette solution from intracellular solution in the perforated patch configuration.

Supplementary Figure 5 Focal GABAergic stimulation does not induce APs in newborn DCX+ granule cells.

(a) Scheme depicting the position of the recording electrode and the stimulation electrode in the granule cells layer (GCL, blue) and molecular layer (ML, red). (b) Typical firing pattern of a young GC (top) in response to somatic current injection (bottom). (c) Postsynaptic response of a young GC to GCL burst stimulation in the presence of NBQX and AP5. (d) Postsynaptic response of a young GC to ML burst stimulation.

Supplementary Figure 6 AP threshold and latency after GABAergic and glutamatergic synaptic stimulation.

(a) Phase plot of an AP generated by synaptic stimulation in a young DCX+ granule cell. Inset, AP trace used for phase plot. Black, original data. Gray, after smoothing with a Savitzky-Golay filter (2nd order, 1 ms window width). (b) AP threshold and EGABA are similar in young granule cells (n = 13 and 10, p = 0.6330, Mann-Whitney U test) but highly different in mature neurons (n = 52 and 6, p < 0.0001, Mann-Whitney U test). (c) Numbers of spikes elicited by GABAergic and glutamatergic inputs at different latencies after ML-stimulation onset. Data were fitted with a Gaussian distribution. Inset, Representative trace of AP firing induced by combined GCL- and ML-stimulation from a holding potential of –80 mV. Stimulation protocol same as in Figure 6c(ii) with low GCL burst stimulation (blue) followed by ML stimulation (red). (d) Same as c for inputs mediated only by GABAergic synapses. (e) Overlay of Gaussian distributions of GABA + glutamate (red) and GABA-only (green) APs normalized to the integral. (f) Cumulative distribution of AP latencies. Scale bars represent 10 mV, 2.5 ms for a and 20 pA, 40 ms for c,d.

Supplementary Figure 7 Gramicidin perforated-patch recordings of GABAergic AP firing in newborn young granule cells.

(a-d) Five consecutive postsynaptic responses of a young DCX+ granule cell to electrical stimulation of ML and GCL synaptic inputs (n = 5). (a) Subthreshold PSPs induced by a double pulse in the ML (Δt = 10 ms, red). (b) Subthreshold PSPs induced by a burst stimulation in the GCL (8 times at 50 Hz, blue). (c) Pairing of ML and GCL stimulation effectively boosted AP firing. (d) A 3-fold increase in GCL stimulation intensity inhibits AP generation.

Supplementary Figure 8 Timing of GABAergic modulation of mock EPSPs in young and mature granule cells.

(a) Half-duration of GABA-PSP correlates with membrane time constant (p = 0.01, R2 = 0.47). (b) Optimal timing of mock EPSP with GABA-PSP to induce maximal AP probability correlates with membrane time constant (p = 0.0399, R2 = 0.3303). (c) Combined somatic current injection (green) and extracellular GCL stimulation (blue) in a mature GC in the presence of NBQX, AP5 and CGP. Mock PSP (22.0 ± 0.5 mV, n = 13) was shifted relative to GABA conductance. (d) Summary plot of PSP peak potentials at different delays relative to first stimulus. Reduction of PSP peak potential is prominent during GABAergic conductance (n = 13). (e) Combined somatic current injection and extracellular GCL stimulation in a young DCX+ GC in the presence of NBQX, AP5 and CGP. Mock PSP (23.3 ± 0.4 mV, n = 13) was shifted relative to GABA conductance. APs were cut for better illustration of subthreshold PSPs. (f) Summary plot of PSP peak potentials at different delays relative to first stimulus fitted with the product of two exponential functions (n = 13).

Supplementary Figure 9 Young granule cells show rapid capacitive current transients.

(a) Voltage response to a hyperpolarizing current pulse in a young granule cell. The capacitive current transient decays monoexponentially (red line). (b) Voltage response to a hyperpolarizing current pulse in a mature granule cell. The capacitive current transient decays biexponentially (red solid line). Dotted line represents a monoexponential fit.

Supplementary Figure 10 Scheme of GABAergic excitation and inhibition of AP firing.

(a) Presynaptic APs in glutamatergic fibers of the molecular layer (ML) generate EPSPs, which are too small to evoke APs in young granule cells. (b) Pairing of subthreshold PSPs in ML with a low number of active GABAergic synapses in the granule cell layer (GCL; 5-30% of GABAergic connections) will generate an axonal spike output. (c) Stronger GABAergic activity with more than 40% of synapses activated will effectively inhibit AP firing.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heigele, S., Sultan, S., Toni, N. et al. Bidirectional GABAergic control of action potential firing in newborn hippocampal granule cells. Nat Neurosci 19, 263–270 (2016). https://doi.org/10.1038/nn.4218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing