Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Remodeling myelination: implications for mechanisms of neural plasticity

Abstract

One of the most significant paradigm shifts in membrane remodeling is the emerging view that membrane transformation is not exclusively controlled by cytoskeletal rearrangement, but also by biophysical constraints, adhesive forces, membrane curvature and compaction. One of the most exquisite examples of membrane remodeling is myelination. The advent of myelin was instrumental in advancing the nervous system during vertebrate evolution. With more rapid and efficient communication between neurons, faster and more complex computations could be performed in a given time and space. Our knowledge of how myelin-forming oligodendrocytes select and wrap axons has been limited by insufficient spatial and temporal resolution. By virtue of recent technological advances, progress has clarified longstanding controversies in the field. Here we review insights into myelination, from target selection to axon wrapping and membrane compaction, and discuss how understanding these processes has unexpectedly opened new avenues of insight into myelination-centered mechanisms of neural plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of myelin and molecular domains along myelinated axons.
Figure 2: The current model of myelination in the CNS.
Figure 3: Intracellular compaction of myelin membranes.

Similar content being viewed by others

References

  1. Hartline, D.K. & Colman, D.R. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr. Biol. 17, R29–R35 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Zalc, B., Goujet, D. & Colman, D. The origin of the myelination program in vertebrates. Curr. Biol. 18, R511–R512 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Ben Geren, B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp. Cell Res. 7, 558–562 (1954).

    Article  CAS  PubMed  Google Scholar 

  4. Bunge, M.B., Bunge, R.P. & Pappas, G.D. Electron microscopic demonstration of connections between glia and myelin sheaths in the developing mammalian central nervous system. J. Cell Biol. 12, 448–453 (1962).

    Article  CAS  PubMed  Google Scholar 

  5. Eshed-Eisenbach, Y. & Peles, E. The making of a node: a co-production of neurons and glia. Curr. Opin. Neurobiol. 23, 1049–1056 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Normand, E.A. & Rasband, M.N. Subcellular patterning: axonal domains with specialized structure and function. Dev. Cell 32, 459–468 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Waxman, S.G. Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3, 141–150 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Waxman, S.G. Axon-glia interactions: building a smart nerve fiber. Curr. Biol. 7, R406–R410 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Babbs, C.F. & Shi, R. Subtle paranodal injury slows impulse conduction in a mathematical model of myelinated axons. PLoS One 8, e67767 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fields, R.D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31, 361–370 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pajevic, S., Basser, P.J. & Fields, R.D. Role of myelin plasticity in oscillations and synchrony of neuronal activity. Neuroscience 276, 135–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Hildebrand, C., Remahl, S., Persson, H. & Bjartmar, C. Myelinated nerve fibres in the CNS. Prog. Neurobiol. 40, 319–384 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, S.S. et al. Functional trade-offs in white matter axonal scaling. J. Neurosci. 28, 4047–4056 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salzer, J.L. Schwann cell myelination. Cold Spring Harb. Perspect. Biol. 7, a020529 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mei, L. & Nave, K.A. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 83, 27–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brinkmann, B.G. et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 59, 581–595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mirsky, R. et al. Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture. J. Cell Biol. 84, 483–494 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Aggarwal, S. et al. A size barrier limits protein diffusion at the cell surface to generate lipid-rich myelin-membrane sheets. Dev. Cell 21, 445–456 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Rosenberg, S.S., Kelland, E.E., Tokar, E., De la Torre, A.R. & Chan, J.R. The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proc. Natl. Acad. Sci. USA 105, 14662–14667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, S. et al. A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat. Methods 9, 917–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Foran, D.R. & Peterson, A.C. Myelin acquisition in the central nervous system of the mouse revealed by an MBP-Lac Z transgene. J. Neurosci. 12, 4890–4897 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brody, B.A., Kinney, H.C., Kloman, A.S. & Gilles, F.H. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J. Neuropathol. Exp. Neurol. 46, 283–301 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Kinney, H.C., Brody, B.A., Kloman, A.S. & Gilles, F.H. Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J. Neuropathol. Exp. Neurol. 47, 217–234 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Piaton, G., Gould, R.M. & Lubetzki, C. Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. J. Neurochem. 114, 1243–1260 (2010).

    CAS  PubMed  Google Scholar 

  25. Taveggia, C., Feltri, M.L. & Wrabetz, L. Signals to promote myelin formation and repair. Nat. Rev. Neurol. 6, 276–287 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tomassy, G.S. et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344, 319–324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ramón y Cajal, S. Degeneration & Regeneration of the Nervous System (Oxford Univ. Press, London, 1928).

  28. Robertson, J.D. The ultrastructure of adult vertebrate peripheral myelinated nerve fibers in relation to myelinogenesis. J. Biophys. Biochem. Cytol. 1, 271–278 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bunge, R.P., Bunge, M.B. & Bates, M. Movements of the Schwann cell nucleus implicate progression of the inner (axon-related) Schwann cell process during myelination. J. Cell Biol. 109, 273–284 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Webster, H.D. The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerves. J. Cell Biol. 48, 348–367 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fraher, J.P. A quantitative study of anterior root fibres during early myelination. II. Longitudinal variation in sheath thickness and axon circumference. J. Anat. 115, 421–444 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fraher, J.P. Quantitative studies on the maturation of central and peripheral parts of individual ventral motoneuron axons. I. Myelin sheath and axon calibre. J. Anat. 126, 509–533 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ioannidou, K., Anderson, K.I., Strachan, D., Edgar, J.M. & Barnett, S.C. Time-lapse imaging of the dynamics of CNS glial-axonal interactions in vitro and ex vivo. PLoS One 7, e30775 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sobottka, B., Ziegler, U., Kaech, A., Becher, B. & Goebels, N. CNS live imaging reveals a new mechanism of myelination: the liquid croissant model. Glia 59, 1841–1849 (2011).

    Article  PubMed  Google Scholar 

  35. Möbius, W. et al. Electron microscopy of the mouse central nervous system. Methods Cell Biol. 96, 475–512 (2010).

    Article  PubMed  Google Scholar 

  36. Peddie, C.J. & Collinson, L.M. Exploring the third dimension: volume electron microscopy comes of age. Micron 61, 9–19 (2014).

    Article  PubMed  Google Scholar 

  37. Czopka, T., Ffrench-Constant, C. & Lyons, D.A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell 25, 599–609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Snaidero, N. et al. Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156, 277–290 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nawaz, S. et al. Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev. Cell 34, 139–151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zuchero, J.B. et al. CNS myelin wrapping is driven by actin disassembly. Dev. Cell 34, 152–167 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chomiak, T. & Hu, B. What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. PLoS One 4, e7754 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Peters, A. Further observations on the structure of myelin sheaths in the central nervous system. J. Cell Biol. 20, 281–296 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Waxman, S.G. & Swadlow, H.A. Ultrastructure of visual callosal axons in the rabbit. Exp. Neurol. 53, 115–127 (1976).

    Article  CAS  PubMed  Google Scholar 

  44. Nave, K.A. & Salzer, J.L. Axonal regulation of myelination by neuregulin 1. Curr. Opin. Neurobiol. 16, 492–500 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Jahn, O., Tenzer, S. & Werner, H.B. Myelin proteomics: molecular anatomy of an insulating sheath. Mol. Neurobiol. 40, 55–72 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bird, T.D., Farrell, D.F. & Sumi, S.M. Brain lipid composition of the shiverer mouse: (genetic defect in myelin development). J. Neurochem. 31, 387–391 (1978).

    Article  CAS  PubMed  Google Scholar 

  47. Privat, A., Jacque, C., Bourre, J.M., Dupouey, P. & Baumann, N. Absence of the major dense line in myelin of the mutant mouse “shiverer”. Neurosci. Lett. 12, 107–112 (1979).

    Article  CAS  PubMed  Google Scholar 

  48. Rosenbluth, J. Central myelin in the mouse mutant shiverer. J. Comp. Neurol. 194, 639–648 (1980).

    Article  CAS  PubMed  Google Scholar 

  49. Harauz, G., Ladizhansky, V. & Boggs, J.M. Structural polymorphism and multifunctionality of myelin basic protein. Biochemistry 48, 8094–8104 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Harauz, G. & Libich, D.S. The classic basic protein of myelin–conserved structural motifs and the dynamic molecular barcode involved in membrane adhesion and protein-protein interactions. Curr. Protein Pept. Sci. 10, 196–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Nawaz, S. et al. Phosphatidylinositol 4,5-bisphosphate-dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. J. Neurosci. 29, 4794–4807 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kattnig, D.R., Bund, T., Boggs, J.M., Harauz, G. & Hinderberger, D. Lateral self-assembly of 18.5-kDa myelin basic protein (MBP) charge component-C1 on membranes. Biochim. Biophys. Acta 1818, 2636–2647 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Aggarwal, S. et al. Myelin membrane assembly is driven by a phase transition of myelin basic proteins into a cohesive protein meshwork. PLoS Biol. 11, e1001577 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, D.W. et al. Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers. Proc. Natl. Acad. Sci. USA 111, E768–E775 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Palaniyar, N., Semotok, J.L., Wood, D.D., Moscarello, M.A. & Harauz, G. Human proteolipid protein (PLP) mediates winding and adhesion of phospholipid membranes but prevents their fusion. Biochim. Biophys. Acta 1415, 85–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Bizzozero, O.A. & Howard, T.A. Myelin proteolipid protein-induced aggregation of lipid vesicles: efficacy of the various molecular species. Neurochem. Res. 27, 1269–1277 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Bakhti, M. et al. Loss of electrostatic cell-surface repulsion mediates myelin membrane adhesion and compaction in the central nervous system. Proc. Natl. Acad. Sci. USA 110, 3143–3148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Klugmann, M. et al. Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18, 59–70 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Möbius, W., Patzig, J., Nave, K.A. & Werner, H.B. Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. Neuron Glia Biol. 4, 111–127 (2008).

    Article  PubMed  Google Scholar 

  60. Coetzee, T., Suzuki, K., Nave, K.A. & Popko, B. Myelination in the absence of galactolipids and proteolipid proteins. Mol. Cell. Neurosci. 14, 41–51 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Inoue, Y., Nakamura, R., Mikoshiba, K. & Tsukada, Y. Fine structure of the central myelin sheath in the myelin deficient mutant Shiverer mouse, with special reference to the pattern of myelin formation by oligodendroglia. Brain Res. 219, 85–94 (1981).

    Article  CAS  PubMed  Google Scholar 

  62. Schnaar, R.L., Gerardy-Schahn, R. & Hildebrandt, H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol. Rev. 94, 461–518 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gravel, M. et al. Overexpression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in transgenic mice alters oligodendrocyte development and produces aberrant myelination. Mol. Cell. Neurosci. 7, 453–466 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Yin, X., Peterson, J., Gravel, M., Braun, P.E. & Trapp, B.D. CNP overexpression induces aberrant oligodendrocyte membranes and inhibits MBP accumulation and myelin compaction. J. Neurosci. Res. 50, 238–247 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Galiano, M.R. et al. A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly. Cell 149, 1125–1139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yoshimura, T. & Rasband, M.N. Axon initial segments: diverse and dynamic neuronal compartments. Curr. Opin. Neurobiol. 27, 96–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Seidl, A.H. Regulation of conduction time along axons. Neuroscience 276, 126–134 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Seidl, A.H., Rubel, E.W. & Harris, D.M. Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection. J. Neurosci. 30, 70–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Richardson, W.D., Young, K.M., Tripathi, R.B. & McKenzie, I. NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron 70, 661–673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zatorre, R.J., Fields, R.D. & Johansen-Berg, H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat. Neurosci. 15, 528–536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, S. & Young, K.M. White matter plasticity in adulthood. Neuroscience 276, 148–160 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. de Hoz, L. & Simons, M. The emerging functions of oligodendrocytes in regulating neuronal network behaviour. Bioessays 37, 60–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Makinodan, M., Rosen, K.M., Ito, S. & Corfas, G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337, 1357–1360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, J. et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 15, 1621–1623 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Watkins, T.A., Emery, B., Mulinyawe, S. & Barres, B.A. Distinct stages of myelination regulated by γ-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60, 555–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yeung, M.S. et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159, 766–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. McKenzie, I.A. et al. Motor skill learning requires active central myelination. Science 346, 318–322 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, Q., Brus-Ramer, M., Martin, J.H. & McDonald, J.W. Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. Neurosci. Lett. 479, 128–133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gibson, E.M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Goebbels, S. et al. Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J. Neurosci. 30, 8953–8964 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hines, J.H., Ravanelli, A.M., Schwindt, R., Scott, E.K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mensch, S. et al. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bergles, D.E., Roberts, J.D., Somogyi, P. & Jahr, C.E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Lin, S.C. & Bergles, D.E. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat. Neurosci. 7, 24–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Kukley, M., Capetillo-Zarate, E. & Dietrich, D. Vesicular glutamate release from axons in white matter. Nat. Neurosci. 10, 311–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Ziskin, J.L., Nishiyama, A., Rubio, M., Fukaya, M. & Bergles, D.E. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci. 10, 321–330 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Virchow, R. Über das ausgebreitete Vorkommen einer dem Nervenmark analogen Substanz in den tierischen Geweben. Virchows Arch. Pathol. Anat. 6, 562–572 (1854).

    Article  Google Scholar 

  88. Pérez-Cerdá, F., Sánchez-Gómez, M.V. & Matute, C. Pío del Río Hortega and the discovery of the oligodendrocytes. Front. Neuroanat. 9, 92 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Chang, K.J. & Rasband, M.N. Excitable domains of myelinated nerves: axon initial segments and nodes of Ranvier. Curr. Top. Membr. 72, 159–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Snaidero, N. & Simons, M. Myelination at a glance. J. Cell Sci. 127, 2999–3004 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The electron micrograph in Figure 1 is courtesy of K. Susuki at Wright State University with technical assistance from D. Townley and support from the Integrated Microscopy Core at Baylor College of Medicine, with funding from the US National Institutes of Health (NIH) (HD007495, DK56338 and CA125123), the Dan L. Duncan Cancer Center and the John S. Dunn Gulf Coast Consortium for Chemical Genomics. We thank P.-J. Lee for her insight, creativity and efforts in making the illustrations. We also thank A.J. Green and the members of the Chan laboratory for critical reading of the manuscript and insightful comments. This review was supported by National Multiple Sclerosis Society research grants (RG4541A3 and RG5203A4), NIH National Institute of Neurological Disorders and Stroke (NINDS) (R01NS062796) and the Rachleff Endowment to J.R.C. S.A.R. is supported by an NIH NINDS National Research Service Award (F31NS081905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonah R Chan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, KJ., Redmond, S. & Chan, J. Remodeling myelination: implications for mechanisms of neural plasticity. Nat Neurosci 19, 190–197 (2016). https://doi.org/10.1038/nn.4200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing