Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glia as drivers of abnormal neuronal activity

Abstract

Reactive astrocytes have been proposed to become incompetent bystanders in epilepsy as a result of cellular changes rendering them unable to perform important housekeeping functions. Indeed, successful surgical treatment of mesiotemporal lobe epilepsy hinges on the removal of the glial scar. New research now extends the role of astrocytes, suggesting that they may drive the disease process by impairing the inhibitory action of neuronal GABA receptors. Here we discuss studies that include hyperexcitability resulting from impaired supply of astrocytic glutamine for neuronal GABA synthesis, and epilepsy resulting from genetically induced astrogliosis or malignant transformation, both of which render the inhibitory neurotransmitter GABA excitatory. In these examples, glial cells alter the expression or function of neuronal proteins involved in excitability. Although epilepsy has traditionally been thought of as a disease caused by changes in neuronal properties exclusively, these new findings challenge us to consider the contribution of glial cells as drivers of epileptogenesis in acquired epilepsies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Astrocytes are active modulators of neuronal activity.

Similar content being viewed by others

References

  1. Kuffler, S.W. & Potter, D.D. Glia in the leech central nervous system: physiological properties and neuron-glia relationship. J. Neurophysiol. 27, 290–320 (1964).

    Article  CAS  PubMed  Google Scholar 

  2. Butt, A. & Verkhratsky, A. Neuroglia: definition, classification, evolution, numbers, development. in Neuroglia (eds. Kettenmann, H. & Ransom, B.R.) 601 (Oxford University Press, 2013).

  3. Olsen, M.L. & Sontheimer, H. Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J. Neurochem. 107, 589–601 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coulter, D.A. & Steinhäuser, C. Role of astrocytes in epilepsy. Cold Spring Harb. Perspect. Med. 5, a022434 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kofuji, P. & Newman, E.A. Potassium buffering in the central nervous system. Neuroscience 129, 1045–1056 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Holmseth, S. et al. The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience 162, 1055–1071 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Marcaggi, P. & Attwell, D. Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia 47, 217–225 (2004).

    Article  PubMed  Google Scholar 

  8. Maragakis, N.J. & Rothstein, J.D. Mechanisms of disease: astrocytes in neurodegenerative disease. Nat. Clin. Pract. Neurol. 2, 679–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robel, S., Berninger, B. & Götz, M. The stem cell potential of glia: lessons from reactive gliosis. Nat. Rev. Neurosci. 12, 88–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Silver, D.J. & Steindler, D.A. Common astrocytic programs during brain development, injury and cancer. Trends Neurosci. 32, 303–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. During, M.J. & Spencer, D.D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341, 1607–1610 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Eid, T. et al. Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363, 28–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Marcus, H.J., Carpenter, K.L., Price, S.J. & Hutchinson, P.J. In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J. Neurooncol. 97, 11–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Steinhäuser, C., Grunnet, M. & Carmignoto, G. Crucial role of astrocytes in temporal lobe epilepsy. Neuroscience 10.1016/j.neuroscience.2014.12.047 (13 January 2015).

  16. Ortinski, P.I. et al. Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat. Neurosci. 13, 584–591 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robel, S. et al. Reactive astrogliosis causes the development of spontaneous seizures. J. Neurosci. 35, 3330–3345 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buckingham, S.C. et al. Glutamate release by primary brain tumors induces epileptic activity. Nat. Med. 17, 1269–1274 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pallud, J. et al. Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci. Transl. Med. 6, 244ra89 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Campbell, S.L. et al. GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. Glia 63, 23–36 (2015).

    Article  PubMed  Google Scholar 

  21. Hertz, L. Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol. 13, 277–323 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Liang, S.L., Carlson, G.C. & Coulter, D.A. Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J. Neurosci. 26, 8537–8548 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kam, K. & Nicoll, R. Excitatory synaptic transmission persists independently of the glutamate-glutamine cycle. J. Neurosci. 27, 9192–9200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eid, T., Tu, N., Lee, T.S. & Lai, J.C. Regulation of astrocyte glutamine synthetase in epilepsy. Neurochem. Int. 63, 670–681 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Robel, S. et al. Conditional deletion of beta1-integrin in astroglia causes partial reactive gliosis. Glia 57, 1630–1647 (2009).

    Article  PubMed  Google Scholar 

  26. Brakebusch, C. & Fässler, R. beta 1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev. 24, 403–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Takada, Y., Ye, X. & Simon, S. The integrins. Genome Biol. 8, 215 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ben-Ari, Y., Khalilov, I., Kahle, K.T. & Cherubini, E. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18, 467–486 (2012).

    Article  PubMed  CAS  Google Scholar 

  29. Kahle, K.T. et al. Modulation of neuronal activity by phosphorylation of the K-Cl cotransporter KCC2. Trends Neurosci. 36, 726–737 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferrini, F. et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl homeostasis. Nat. Neurosci. 16, 183–192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gagnon, M. et al. Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat. Med. 19, 1524–1528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zong, H., Verhaak, R.G. & Canoll, P. The cellular origin for malignant glioma and prospects for clinical advancements. Expert Rev. Mol. Diagn. 12, 383–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Louis, D.N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brismar, T. Physiology of transformed glial cells. Glia 15, 231–243 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Rivera-Zengotita, M. & Yachnis, A.T. Gliosis versus glioma?: don't grade until you know. Adv. Anat. Pathol. 19, 239–249 (2012).

    Article  PubMed  Google Scholar 

  36. Yang, H.Y., Lieska, N., Shao, D., Kriho, V. & Pappas, G.D. Proteins of the intermediate filament cytoskeleton as markers for astrocytes and human astrocytomas. Mol. Chem. Neuropath. 21, 155–176 (1994).

    Article  CAS  Google Scholar 

  37. Yang, C., Rahimpour, S., Yu, A.C., Lonser, R.R. & Zhuang, Z. Regulation and dysregulation of astrocyte activation and implications in tumor formation. Cell. Mol. Life Sci. 70, 4201–4211 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Takano, T. et al. Glutamate release promotes growth of malignant gliomas. Nat. Med. 7, 1010–1015 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Robert, S.M. et al. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci. Transl. Med. 7, 289ra86 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ye, Z.C. & Sontheimer, H. Glioma cells release excitotoxic concentrations of glutamate. Cancer Res. 59, 4383–4391 (1999).

    CAS  PubMed  Google Scholar 

  41. Perez, V.J., Olney, J.W. & Robin, S.J. Glutamate accumulation in infant mouse hypothalamus: influence of temperature. Brain Res. 59, 181–189 (1973).

    Article  CAS  PubMed  Google Scholar 

  42. Buckingham, S.C. & Robel, S. Glutamate and tumor-associated epilepsy: glial cell dysfunction in the peritumoral environment. Neurochem. Int. 63, 696–701 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Di Angelantonio, S. et al. A role for intracellular zinc in glioma alteration of neuronal chloride equilibrium. Cell Death Dis. 5, e1501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clasadonte, J., Dong, J., Hines, D.J. & Haydon, P.G. Astrocyte control of synaptic NMDA receptors contributes to the progressive development of temporal lobe epilepsy. Proc. Natl. Acad. Sci. USA 110, 17540–17545 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sloan, S.A. & Barres, B.A. Looks can be deceiving: reconsidering the evidence for gliotransmission. Neuron 84, 1112–1115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. De Pittà, M., Brunel, N. & Volterra, A. Astrocytes: orchestrating synaptic plasticity? Neuroscience 10.1016/j.neuroscience.2015.04.001 (8 April 2015).

  47. Perea, G., Sur, M. & Araque, A. Neuron-glia networks: integral gear of brain function. Front. Cell. Neurosci. 8, 378 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Agulhon, C. et al. Calcium signaling and gliotransmission in normal versus reactive astrocytes. Front. Pharmacol. 3, 139 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gibbons, M.B., Smeal, R.M., Takahashi, D.K., Vargas, J.R. & Wilcox, K.S. Contributions of astrocytes to epileptogenesis following status epilepticus: opportunities for preventive therapy? Neurochem. Int. 63, 660–669 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Fujita, T. et al. Neuronal transgene expression in dominant-negative SNARE mice. J. Neurosci. 34, 16594–16604 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tian, G.F. et al. An astrocytic basis of epilepsy. Nat. Med. 11, 973–981 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, H.H., Deeb, T.Z., Walker, J.A., Davies, P.A. & Moss, S.J. NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor-mediated currents. Nat. Neurosci. 14, 736–743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Busch, S.A. & Silver, J. The role of extracellular matrix in CNS regeneration. Curr. Opin. Neurobiol. 17, 120–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Soleman, S., Filippov, M.A., Dityatev, A. & Fawcett, J.W. Targeting the neural extracellular matrix in neurological disorders. Neuroscience 253, 194–213 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Dityatev, A. et al. Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dev. Neurobiol. 67, 570–588 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Glykys, J. et al. Local impermeant anions establish the neuronal chloride concentration. Science 343, 670–675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Glykys, J. et al. Response to comments on “Local impermeant anions establish the neuronal chloride concentration”. Science 345, 1130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Luhmann, H.J., Kirischuk, S. & Kilb, W. Comment on “Local impermeant anions establish the neuronal chloride concentration”. Science 345, 1130 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Voipio, J. et al. Comment on “Local impermeant anions establish the neuronal chloride concentration”. Science 345, 1130 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Dityatev, A. & Fellin, T. Extracellular matrix in plasticity and epileptogenesis. Neuron Glia Biol. 4, 235–247 (2008).

    Article  PubMed  Google Scholar 

  61. Gaudet, A.D. & Popovich, P.G. Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp. Neurol. 258, 24–34 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Carmichael, S.T. et al. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp. Neurol. 193, 291–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Roycik, M.D., Myers, J.S., Newcomer, R.G. & Sang, Q.X. Matrix metalloproteinase inhibition in atherosclerosis and stroke. Curr. Mol. Med. 13, 1299–1313 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Vasilyev, D.V. & Barish, M.E. Regulation of an inactivating potassium current (IA) by the extracellular matrix protein vitronectin in embryonic mouse hippocampal neurones. J. Physiol. (Lond.) 547, 859–871 (2003).

    Article  CAS  Google Scholar 

  65. Vasilyev, D.V. & Barish, M.E. Regulation of the hyperpolarization-activated cationic current Ih in mouse hippocampal pyramidal neurones by vitronectin, a component of extracellular matrix. J. Physiol. (Lond.) 560, 659–675 (2004).

    Article  CAS  Google Scholar 

  66. Uhm, J.H., Dooley, N.P., Kyritsis, A.P., Rao, J.S. & Gladson, C.L. Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clin. Cancer Res. 5, 1587–1594 (1999).

    CAS  PubMed  Google Scholar 

  67. Gladson, C.L., Wilcox, J.N., Sanders, L., Gillespie, G.Y. & Cheresh, D.A. Cerebral microenvironment influences expression of the vitronectin gene in astrocytic tumors. J. Cell Sci. 108, 947–956 (1995).

    CAS  PubMed  Google Scholar 

  68. Gladson, C.L. & Cheresh, D.A. Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells. J. Clin. Invest. 88, 1924–1932 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Binder, D.K., Nagelhus, E.A. & Ottersen, O.P. Aquaporin-4 and epilepsy. Glia 60, 1203–1214 (2012).

    Article  PubMed  Google Scholar 

  70. Seifert, G., Carmignoto, G. & Steinhäuser, C. Astrocyte dysfunction in epilepsy. Brain Res. Rev. 63, 212–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Huberfeld, G., Blauwblomme, T. & Miles, R. Hippocampus and epilepsy: findings from human tissues. Rev. Neurol. (Paris) 171, 236–251 (2015).

    Article  CAS  Google Scholar 

  72. MacKenzie, G. & Maguire, J. Chronic stress shifts the GABA reversal potential in the hippocampus and increases seizure susceptibility. Epilepsy Res. 109, 13–27 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Löscher, W., Puskarjov, M. & Kaila, K. Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology 69, 62–74 (2013).

    Article  PubMed  CAS  Google Scholar 

  74. Muthukumar, A.K., Stork, T. & Freeman, M.R. Activity-dependent regulation of astrocyte GAT levels during synaptogenesis. Nat. Neurosci. 17, 1340–1350 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schousboe, A., Madsen, K.K., Barker-Haliski, M.L. & White, H.S. The GABA synapse as a target for antiepileptic drugs: a historical overview focused on GABA transporters. Neurochem. Res. 39, 1980–1987 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (RO1NS052634, RO1NS082851, RO1NS036692) and the American Brain Tumor Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Sontheimer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robel, S., Sontheimer, H. Glia as drivers of abnormal neuronal activity. Nat Neurosci 19, 28–33 (2016). https://doi.org/10.1038/nn.4184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing