Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Cell type– and brain region–resolved mouse brain proteome


Brain transcriptome and connectome maps are being generated, but an equivalent effort on the proteome is currently lacking. We performed high-resolution mass spectrometry–based proteomics for in-depth analysis of the mouse brain and its major brain regions and cell types. Comparisons of the 12,934 identified proteins in oligodendrocytes, astrocytes, microglia and cortical neurons with deep sequencing data of the transcriptome indicated deep coverage of the proteome. Cell type–specific proteins defined as tenfold more abundant than average expression represented about a tenth of the proteome, with an overrepresentation of cell surface proteins. To demonstrate the utility of our resource, we focused on this class of proteins and identified Lsamp, an adhesion molecule of the IgLON family, as a negative regulator of myelination. Our findings provide a framework for a system-level understanding of cell-type diversity in the CNS and serves as a rich resource for analyses of brain development and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of proteome and RNA-Seq data.
Figure 2: Comparative analysis of cell proteomes.
Figure 3: Quantitative analysis of expressed genes.
Figure 4: Abundant and enriched proteins in the mouse brain and its cell types.
Figure 5: Brain region–resolved proteome (a) PCA.
Figure 6: Comparative pathway enrichment analysis identifies cell adhesion molecules enriched in oligodendrocytes and neurons.
Figure 7: Lsamp interacts with and is expressed on oligodendrocytes and neurons.
Figure 8: Lsamp is a negative regulator of myelination in the fiber tracts of the fimbria-fornix.

Similar content being viewed by others


  1. Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS  PubMed  Google Scholar 

  2. Thompson, C.L. et al. A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. Neuron 83, 309–323 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cahoy, J.D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Doyle, J.P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kang, H.J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson, M.B. et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62, 494–509 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hickman, S.E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Butovsky, O. et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    CAS  PubMed  Google Scholar 

  11. Vogel, C. & Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kitchen, R.R., Rozowsky, J.S., Gerstein, M.B. & Nairn, A.C. Decoding neuroproteomics: integrating the genome, translatome and functional anatomy. Nat. Neurosci. 17, 1491–1499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Beck, M., Claassen, M. & Aebersold, R. Comprehensive proteomics. Curr. Opin. Biotechnol. 22, 3–8 (2011).

    CAS  PubMed  Google Scholar 

  14. Mann, M., Kulak, N.A., Nagaraj, N. & Cox, J. The coming age of complete, accurate, and ubiquitous proteomes. Mol. Cell 49, 583–590 (2013).

    CAS  PubMed  Google Scholar 

  15. Nagaraj, N. et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 7, 548 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014).

    CAS  PubMed  Google Scholar 

  17. Kim, M.S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol. Cell Proteomics 11, M111.014050 (2012).

    PubMed  PubMed Central  Google Scholar 

  19. Lundberg, E. et al. Defining the transcriptome and proteome in three functionally different human cell lines. Mol. Syst. Biol. 6, 450 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Pontén, F. et al. A global view of protein expression in human cells, tissues, and organs. Mol. Syst. Biol. 5, 337 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. Barres, B.A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Sherman, D.L. & Brophy, P.J. Mechanisms of axon ensheathment and myelin growth. Nat. Rev. Neurosci. 6, 683–690 (2005).

    CAS  PubMed  Google Scholar 

  23. Aggarwal, S., Yurlova, L. & Simons, M. Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol. 21, 585–593 (2011).

    CAS  PubMed  Google Scholar 

  24. Molofsky, A.V. et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 26, 891–907 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hanisch, U.K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394 (2007).

    CAS  PubMed  Google Scholar 

  26. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  Google Scholar 

  27. Nagaraj, N. et al. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol. Cell Proteomics 11, M111.013722 (2012).

    PubMed  Google Scholar 

  28. Hebenstreit, D. et al. RNA sequencing reveals two major classes of gene expression levels in metazoan cells. Mol. Syst. Biol. 7, 497 (2011).

    PubMed  PubMed Central  Google Scholar 

  29. Beck, M. et al. The quantitative proteome of a human cell line. Mol. Syst. Biol. 7, 549 (2011).

    PubMed  PubMed Central  Google Scholar 

  30. de Sousa Abreu, R., Penalva, L.O., Marcotte, E.M. & Vogel, C. Global signatures of protein and mRNA expression levels. Mol. Biosyst. 5, 1512–1526 (2009).

    PubMed  Google Scholar 

  31. Maier, T., Guell, M. & Serrano, L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 583, 3966–3973 (2009).

    CAS  PubMed  Google Scholar 

  32. Cox, J. et al. MaxLFQ allows accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction. Mol. Cell. Proteomics 13, 2513–2526 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wiśśniewski, J.R. et al. Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma. Mol. Syst. Biol. 8, 611 (2012).

    Google Scholar 

  34. Marguerat, S. et al. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151, 671–683 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Snead, M.P. & Yates, J.R. Clinical and molecular genetics of Stickler syndrome. J. Med. Genet. 36, 353–359 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Charles, P. et al. Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc. Natl. Acad. Sci. USA 97, 7585–7590 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pimenta, A.F. et al. The limbic system-associated membrane protein is an Ig superfamily member that mediates selective neuronal growth and axon targeting. Neuron 15, 287–297 (1995).

    CAS  PubMed  Google Scholar 

  38. Schofield, P.R. et al. Molecular characterization of a new immunoglobulin superfamily protein with potential roles in opioid binding and cell contact. EMBO J. 8, 489–495 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Struyk, A.F. et al. Cloning of neurotrimin defines a new subfamily of differentially expressed neural cell adhesion molecules. J. Neurosci. 15, 2141–2156 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Reed, J., McNamee, C., Rackstraw, S., Jenkins, J. & Moss, D. Diglons are heterodimeric proteins composed of IgLON subunits, and Diglon-CO inhibits neurite outgrowth from cerebellar granule cells. J. Cell Sci. 117, 3961–3973 (2004).

    CAS  PubMed  Google Scholar 

  41. Gil, O.D., Zanazzi, G., Struyk, A.F. & Salzer, J.L. Neurotrimin mediates bifunctional effects on neurite outgrowth via homophilic and heterophilic interactions. J. Neurosci. 18, 9312–9325 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Spiegel, I. et al. A central role for Necl4 (SynCAM4) in Schwann cell-axon interaction and myelination. Nat. Neurosci. 10, 861–869 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Maurel, P. et al. Nectin-like proteins mediate axon Schwann cell interactions along the internode and are essential for myelination. J. Cell Biol. 178, 861–874 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Reed, J.E. et al. Expression of cellular adhesion molecule 'OPCML' is down-regulated in gliomas and other brain tumours. Neuropathol. Appl. Neurobiol. 33, 77–85 (2007).

    CAS  PubMed  Google Scholar 

  45. Moghaddas Gholami, A. et al. Global proteome analysis of the NCI-60 cell line panel. Cell Rep. 4, 609–620 (2013).

    Google Scholar 

  46. Azimifar, S.B., Nagaraj, N., Cox, J. & Mann, M. Cell type–resolved quantitative proteomics of murine liver. Cell Metab. 20, 1076–1087 (2014).

    CAS  PubMed  Google Scholar 

  47. Bayés, A. et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat. Neurosci. 14, 19–21 (2011).

    PubMed  Google Scholar 

  48. Gil, O.D. et al. Complementary expression and heterophilic interactions between IgLON family members neurotrimin and LAMP. J. Neurobiol. 51, 190–204 (2002).

    CAS  PubMed  Google Scholar 

  49. Fields, R.D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31, 361–370 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Innos, J., Koido, K., Philips, M.A. & Vasar, E. Limbic system associated membrane protein as a potential target for neuropsychiatric disorders. Front. Pharmacol 4, 32 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Trajkovic, K. et al. Neuron to glia signaling triggers myelin membrane exocytosis from endosomal storage sites. J. Cell Biol. 172, 937–948 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fitzner, D. et al. Myelin basic protein-dependent plasma membrane reorganization in the formation of myelin. EMBO J. 25, 5037–5048 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Regen, T. et al. CD14 and TRIF govern distinct responsiveness and responses in mouse microglial TLR4 challenges by structural variants of LPS. Brain Behav. Immun. 25, 957–970 (2011).

    CAS  PubMed  Google Scholar 

  54. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    CAS  PubMed  Google Scholar 

  55. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    CAS  PubMed  Google Scholar 

  56. Wiśniewski, J.R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    PubMed  Google Scholar 

  57. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    CAS  PubMed  Google Scholar 

  58. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLOS Comput. Biol. 9, e1003118 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schnell, C. et al. The multispecific thyroid hormone transporter OATP1C1 mediates cell-specific sulforhodamine 101-labeling of hippocampal astrocytes. Brain Struct. Funct. 220, 193–203 (2015).

    CAS  PubMed  Google Scholar 

  61. Snaidero, N. et al. Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156, 277–290 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We would like to acknowledge the PRIDE Team for upload of proteomics raw data. We thank J. Cox, M.Y. Hein and K. Mayr for helpful discussions, and C. Velte, N. Schwedhelm-Dornmeyer, S. Safaiyan, G. Sowa and M. Dodel for technical assistance. Illumina sequencing was performed by R. Reinhardt at the Max-Planck Genome Center Cologne. The work was supported grants from the German Research Foundation (SI 746/9-1; 10-1; TRR43; RO 4076/3-1), the Tschira-Stiftung, and grants from the Estonian Research Council (IUT20-41 and PUT129). The research leading to these results has received funding from the European Commission under FP7 GA n°ERC-2012-SyG_318987 – ToPAG and MC-ITN IN-SENS (#607616). S.S. received a PhD scholarship from the Boeringer-Ingelheim Fonds and N.K. this recipient of a Marie-Curie fellowship from the INSENS/ FP7-PEOPLE-2013 (607616) framework.

Author information

Authors and Affiliations



K.S., M.M. and M.S. designed the experiments. K.S., S.S., C.G.B., N.K., N.M.-H., L.C. and U.-K.H. performed the experiments. K.S., S.S., S.T., N.K., M.J.R., M.M. and M.S. analyzed the data. K.K. and M.-A.P. provided materials. K.S., M.M. and M.S. wrote the manuscript.

Corresponding authors

Correspondence to Matthias Mann or Mikael Simons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 (PDF 4107 kb)

Supplementary Methods Checklist (PDF 468 kb)

Supplementary Table 1

Protein expression data of adult mouse brain and cultured CNS cell types measured as fractionated samples. (XLSX 7700 kb)

Supplementary Table 2

Protein expression data of mouse brain regions (P60), acutely isolated CNS cell types and cerebellum development (P5, P14, P24) measured by 'single-run' analysis. (XLSX 5694 kb)

Supplementary Table 3

RNA-Seq expression data for the cultured CNS cell types. (XLSX 4139 kb)

Supplementary Table 4

Gene ontology enrichment analysis of the genes expressed exclusively at the transcript level and lack evidence of expression at the protein level. (XLSX 15 kb)

Supplementary Table 5

Protein expression data of cultured CNS cell types for individual replicates and developmental stage. (XLSX 2930 kb)

Supplementary Table 6

Differentially expressed proteins in cultured CNS cell types. (XLSX 2671 kb)

Supplementary Table 7

Differentially expressed proteins in cortical neurons and cerebellar granule neurons. (XLSX 8287 kb)

Supplementary Table 8

Clusters based enrichment analysis for the cultured CNS cell types. (XLSX 68 kb)

Supplementary Table 9

Cluster based enrichment analysis for cerebellar granule neurons. (XLSX 20 kb)

Supplementary Table 10

Comparison of annotation terms (KEGG pathway, GO terms and Corum) between the cultured CNS cell types resolved to individual replicates and developmental stage. (XLSX 375 kb)

Supplementary Table 11

GOCC enrichment of proteins >10 fold enriched in cultured CNS cell types. (XLSX 179 kb)

Supplementary Table 12

GOCC enrichment of transcripts >10 fold enriched in cultured CNS cell types. (XLSX 21 kb)

Supplementary Table 13

Differentially expressed proteins in isolated CNS cell types. (XLSX 3391 kb)

Supplementary Table 14

Comparison of annotation terms (GO terms and Corum) between the cultured and isolated CNS cell types resolved to individual replicates. (XLSX 682 kb)

Supplementary Table 15

A list of the most abundant brain-enriched (>10 fold enrichment as compared to the liver) proteins. (XLSX 51 kb)

Supplementary Table 16

Comparison of annotation terms (KEGG pathways and GO terms) between the mouse brain and liver. (XLSX 100 kb)

Supplementary Table 17

Protein expression in mouse brain regions. (XLSX 5399 kb)

Supplementary Table 18

Differentially expressed 2,901 proteins in mouse brain regions. (XLSX 2152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Schmitt, S., Bergner, C. et al. Cell type– and brain region–resolved mouse brain proteome. Nat Neurosci 18, 1819–1831 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing