Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity


Functional magnetic resonance imaging (fMRI) studies typically collapse data from many subjects, but brain functional organization varies between individuals. Here we establish that this individual variability is both robust and reliable, using data from the Human Connectome Project to demonstrate that functional connectivity profiles act as a 'fingerprint' that can accurately identify subjects from a large group. Identification was successful across scan sessions and even between task and rest conditions, indicating that an individual's connectivity profile is intrinsic, and can be used to distinguish that individual regardless of how the brain is engaged during imaging. Characteristic connectivity patterns were distributed throughout the brain, but the frontoparietal network emerged as most distinctive. Furthermore, we show that connectivity profiles predict levels of fluid intelligence: the same networks that were most discriminating of individuals were also most predictive of cognitive behavior. Results indicate the potential to draw inferences about single subjects on the basis of functional connectivity fMRI.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Identification analysis procedure and network definitions.
Figure 2: Identification accuracy across session pairs and networks.
Figure 3: Factors affecting identification accuracy.
Figure 4: Effect of node and network scheme on identification accuracy.
Figure 5: Individual connectivity profiles predict cognitive behavior.


  1. 1

    Mangin, J.F. et al. A framework to study the cortical folding patterns. Neuroimage 23 (suppl. 1): S129–S138 (2004).

    PubMed  Google Scholar 

  2. 2

    Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T. & Zilles, K. Brodmann's areas 17 and 18 brought into stereotaxic space-where and how variable? Neuroimage 11, 66–84 (2000).

    CAS  PubMed  Google Scholar 

  3. 3

    Bürgel, U. et al. White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29, 1092–1105 (2006).

    PubMed  Google Scholar 

  4. 4

    Grabner, R.H. et al. Individual differences in mathematical competence predict parietal brain activation during mental calculation. Neuroimage 38, 346–356 (2007).

    PubMed  Google Scholar 

  5. 5

    Newman, S.D., Carpenter, P.A., Varma, S. & Just, M.A. Frontal and parietal participation in problem solving in the Tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia 41, 1668–1682 (2003).

    PubMed  Google Scholar 

  6. 6

    Rypma, B. & D'Esposito, M. The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proc. Natl. Acad. Sci. USA 96, 6558–6563 (1999).

    CAS  PubMed  Google Scholar 

  7. 7

    Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Van Essen, D.C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).

    PubMed  PubMed Central  Google Scholar 

  9. 9

    Barch, D.M. et al. Function in the human connectome: Task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Shen, X., Tokoglu, F., Papademetris, X. & Constable, R Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. Neuroimage 82, 403–415 (2013).

    CAS  PubMed  Google Scholar 

  11. 11

    Bianciardi, M. et al. Modulation of spontaneous fMRI activity in human visual cortex by behavioral state. Neuroimage 45, 160–168 (2009).

    PubMed  Google Scholar 

  12. 12

    Jiang, T., He, Y., Zang, Y. & Weng, X. Modulation of functional connectivity during the resting state and the motor task. Hum. Brain Mapp. 22, 63–71 (2004).

    PubMed  Google Scholar 

  13. 13

    Stevens, W.D., Buckner, R.L. & Schacter, D.L. Correlated low-frequency BOLD fluctuations in the resting human brain are modulated by recent experience in category-preferential visual regions. Cereb. Cortex 20, 1997–2006 (2010).

    PubMed  Google Scholar 

  14. 14

    Fischl, B. et al. Automatically parcellating the human cerebral cortex. Cereb. Cortex 14, 11–22 (2004).

    PubMed  Google Scholar 

  15. 15

    Buckner, R.L., Krienen, F.M., Castellanos, A., Diaz, J.C. & Yeo, B.T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Van Dijk, K.R., Sabuncu, M.R. & Buckner, R.L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–438 (2012).

    Google Scholar 

  17. 17

    Cattell, R.B. Intelligence: Its Structure, Growth and Action: Its Structure, Growth and Action (Elsevier, 1987).

  18. 18

    Deary, I.J., Whalley, L.J., Lemmon, H., Crawford, J.R. & Starr, J.M. The stability of individual differences in mental ability from childhood to old age: follow-up of the 1932 Scottish Mental Survey. Intelligence 28, 49–55 (2000).

    Google Scholar 

  19. 19

    Colom, R. & Flores-Mendoza, C.E. Intelligence predicts scholastic achievement irrespective of SES factors: evidence from Brazil. Intelligence 35, 243–251 (2007).

    Google Scholar 

  20. 20

    Strenze, T. Intelligence and socioeconomic success: a meta-analytic review of longitudinal research. Intelligence 35, 401–426 (2007).

    Google Scholar 

  21. 21

    Gottfredson, L.S. Intelligence: is it the epidemiologists' elusive “fundamental cause” of social class inequalities in health? J. Pers. Soc. Psychol. 86, 174 (2004).

    PubMed  Google Scholar 

  22. 22

    Chandola, T., Deary, I., Blane, D. & Batty, G. Childhood IQ in relation to obesity and weight gain in adult life: the National Child Development (1958) Study. Int. J. Obes. (Lond.) 30, 1422–1432 (2006).

    CAS  Google Scholar 

  23. 23

    Bilker, W.B. et al. Development of abbreviated nine-item forms of the Raven's Standard Progressive Matrices Test. Assessment 19, 354–369 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. 24

    Cole, M.W., Bassett, D.S., Power, J.D., Braver, T.S. & Petersen, S.E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Smith, S.M. et al. Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 106, 13040–13045 (2009).

    CAS  PubMed  Google Scholar 

  26. 26

    Martuzzi, R., Ramani, R., Qiu, M., Rajeevan, N. & Constable, R.T. Functional connectivity and alterations in baseline brain state in humans. Neuroimage 49, 823–834 (2010).

    PubMed  Google Scholar 

  27. 27

    Laumann, T.O. et al. Functional system and areal organization of a highly sampled individual human brain. Neuron 87, 657–670 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Gabrieli, John D.E., Ghosh, Satrajit S. & Whitfield-Gabrieli, S. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85, 11–26 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Castellanos, F.X., Di Martino, A., Craddock, R.C., Mehta, A.D. & Milham, M.P. Clinical applications of the functional connectome. Neuroimage 80, 527–540 (2013).

    CAS  PubMed  Google Scholar 

  30. 30

    Kelly, C., Biswal, B.B., Craddock, R.C., Castellanos, F.X. & Milham, M.P. Characterizing variation in the functional connectome: promise and pitfalls. Trends Cogn. Sci. 16, 181–188 (2012).

    PubMed  Google Scholar 

  31. 31

    Zilles, K., Armstrong, E., Schleicher, A. & Kretschmann, H.J. The human pattern of gyrification in the cerebral cortex. Anat. Embryol. (Berl.) 179, 173–179 (1988).

    CAS  Google Scholar 

  32. 32

    Hill, J. et al. A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants. J. Neurosci. 30, 2268–2276 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Miranda-Dominguez, O. et al. Connectotyping: model based fingerprinting of the functional connectome. PLoS ONE 9, e111048 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Cole, M.W. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 16, 1348–1355 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Power, J.D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Cole, M.W., Yarkoni, T., Repovš, G., Anticevic, A. & Braver, T.S. Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J. Neurosci. 32, 8988–8999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Choi, Y.Y. et al. Multiple bases of human intelligence revealed by cortical thickness and neural activation. J. Neurosci. 28, 10323–10329 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Kanai, R. & Rees, G. The structural basis of inter-individual differences in human behaviour and cognition. Nat. Rev. Neurosci. 12, 231–242 (2011).

    CAS  PubMed  Google Scholar 

  39. 39

    Fornito, A. & Harrison, B.J. Brain connectivity and mental illness. Front. Psychiatry 3, 72 (2012).

    PubMed  PubMed Central  Google Scholar 

  40. 40

    Greicius, M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 21, 424–430 (2008).

    PubMed  Google Scholar 

  41. 41

    Cuthbert, B.N. & Insel, T.R. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 11, 126 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Insel, T. et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    Google Scholar 

  43. 43

    Hutchison, R.M. et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013).

    PubMed  Google Scholar 

  44. 44

    Hampson, M. et al. Intrinsic brain connectivity related to age in young and middle aged adults. PLoS ONE 7, e44067 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Meunier, D., Achard, S., Morcom, A. & Bullmore, E. Age-related changes in modular organization of human brain functional networks. Neuroimage 44, 715–723 (2009).

    PubMed  Google Scholar 

  46. 46

    Scheinost, D. et al. Sex differences in normal age trajectories of functional brain networks. Hum. Brain Mapp. 36, 1524–1535 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. 47

    Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P. & Mayberg, H.S. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012).

    PubMed  Google Scholar 

  48. 48

    Van Essen, D.C., Glasser, M.F., Dierker, D.L., Harwell, J. & Coalson, T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22, 2241–2262 (2012).

    PubMed  Google Scholar 

  49. 49

    Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002).

    CAS  PubMed  Google Scholar 

  50. 50

    Glasser, M.F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Joshi, A. et al. Unified framework for development, deployment and robust testing of neuroimaging algorithms. Neuroinformatics 9, 69–84 (2011).

    PubMed  PubMed Central  Google Scholar 

  52. 52

    Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    PubMed  Google Scholar 

Download references


Data were provided in part by the Human Connectome Project, WU-Minn Consortium (principal investigators, D. Van Essen and K. Ugurbil; 1U54MH091657) funded by the 16 US National Institutes of Health (NIH) institutes and centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. This work was also supported by NIH grant EB009666 (R.T.C.), T32 DA022975 (D.S.) and the US National Science Foundation Graduate Research Fellowship Program (E.S.F. and M.D.R.).

Author information




E.S.F., X.S., D.S., X.P. and R.T.C. conceptualized the study. X.S. designed and performed the identification analyses with support from E.S.F. and D.S. E.S.F. designed and performed the behavioral analyses with support from M.D.R. and J.H. X.S. and X.P. contributed unpublished data analysis tools and visualization software. X.P., M.M.C. and R.T.C. provided support and guidance with data interpretation. E.S.F. wrote the manuscript, with contributions from X.S. and comments from all other authors.

Corresponding author

Correspondence to Emily S Finn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finn, E., Shen, X., Scheinost, D. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat Neurosci 18, 1664–1671 (2015).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing