Measuring macroscopic brain connections in vivo

Abstract

Decades of detailed anatomical tracer studies in non-human animals point to a rich and complex organization of long-range white matter connections in the brain. State-of-the art in vivo imaging techniques are striving to achieve a similar level of detail in humans, but multiple technical factors can limit their sensitivity and fidelity. In this review, we mostly focus on magnetic resonance imaging of the brain. We highlight some of the key challenges in analyzing and interpreting in vivo connectomics data, particularly in relation to what is known from classical neuroanatomy in laboratory animals. We further illustrate that, despite the challenges, in vivo imaging methods can be very powerful and provide information on connections that is not available by any other means.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Examples of complex white-matter organization in monkey brains.
Figure 2: Diffusion MRI and tractography.
Figure 3: Textbook and estimated cortico-cerebellar connections using functional and diffusion MRI.
Figure 4: Agreement between functional and structural connectivity in measuring connections in human and macaques.
Figure 5: Testing generic organization principles using tractography.
Figure 6: Finding homolog areas across species.

References

  1. 1

    Schuz, A.B.V. The human cortical white matter: quantitative aspects of cortico-cortical long-range connectivity. in Cortical Areas: Unity and Diversity (eds. Shuez, A. & Miller, R.) 377–384 (Taylor & Francis, London, 2002).

  2. 2

    Passingham, R.E., Stephan, K.E. & Kotter, R. The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3, 606–616 (2002).

    CAS  PubMed  Google Scholar 

  3. 3

    Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

    PubMed  PubMed Central  Google Scholar 

  4. 4

    Modha, D.S. & Singh, R. Network architecture of the long-distance pathways in the macaque brain. Proc. Natl. Acad. Sci. USA 107, 13485–13490 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Markov, N.T. et al. Cortical high-density counterstream architectures. Science 342, 1238406 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Van Essen, D.C. et al. Mapping connections in humans and non-human primates: aspirations and challenges for diffusion imaging. in Diffusion MRI, 2nd edition (eds. Johansen-Berg, H. & Behrens, T.E.J.) 337–358 (Academic Press, 2014).

  7. 7

    Barbas, H. Pattern in the laminar origin of corticocortical connections. J. Comp. Neurol. 252, 415–422 (1986).

    CAS  PubMed  Google Scholar 

  8. 8

    Goldman-Rakic, P.S. Modular organization of prefrontal cortex. Trends Neurosci. 7, 419–424 (1984).

    Google Scholar 

  9. 9

    Goldman-Rakic, P.S. & Schwartz, M.L. Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates. Science 216, 755–757 (1982).

    CAS  PubMed  Google Scholar 

  10. 10

    Markov, N.T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014).

    CAS  PubMed  Google Scholar 

  11. 11

    Ercsey-Ravasz, M. et al. A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80, 184–197 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Donahue, C. et al. Comparing diffusion tractography with tracer-based connectivity in the macaque. Human Brain Mapping 2014, 3916 (Organization for Human Brain Mapping, Hamburg, 2014).

  13. 13

    Le Bihan, D. et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168, 497–505 (1988).

    CAS  PubMed  Google Scholar 

  14. 14

    Ogawa, S. et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87, 9868–9872 (1990).

    CAS  PubMed  Google Scholar 

  15. 15

    Catani, M. et al. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17, 77–94 (2002).

    PubMed  Google Scholar 

  16. 16

    Craddock, R.C. et al. Imaging human connectomes at the macroscale. Nat. Methods 10, 524–539 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Jbabdi, S. & Johansen-Berg, H. Tractography: where do we go from here? Brain Connect. 1, 169–183 (2011).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Jones, D. Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Imaging Med. 2, 341–355 (2010).

    Google Scholar 

  19. 19

    Sotiropoulos, S.N., Behrens, T.E. & Jbabdi, S. Ball and rackets: inferring fiber fanning from diffusion-weighted MRI. Neuroimage 60, 1412–1425 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Zhang, H. et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61, 1000–1016 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. 21

    Reisert, M. & Kiselev, V.G. Fiber continuity: an anisotropic prior for ODF estimation. IEEE Trans. Med. Imaging 30, 1274–1283 (2011).

    PubMed  Google Scholar 

  22. 22

    Smith, S.M. et al. Network modelling methods for FMRI. Neuroimage 54, 875–891 (2011).

    PubMed  Google Scholar 

  23. 23

    Setsompop, K. et al. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. Neuroimage 80, 220–233 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Sotiropoulos, S.N. et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage 80, 125–143 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Le Bihan, D. The 'wet mind': water and functional neuroimaging. Phys. Med. Biol. 52, R57–R90 (2007).

    PubMed  Google Scholar 

  26. 26

    Jbabdi, S. et al. Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography. J. Neurosci. 33, 3190–3201 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Thomas, C. et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc. Natl. Acad. Sci. USA 111, 16574–16579 (2014).

    CAS  PubMed  Google Scholar 

  28. 28

    Schmahmann, J.D. & Pandya, D.N. Fibre Pathways of the Brain (Oxford UP, 2006).

  29. 29

    Reveley, C. et al. Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc. Natl. Acad. Sci. USA 112, E2820–E2828 (2015).

    CAS  PubMed  Google Scholar 

  30. 30

    Ugˇurbil, K. et al. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage 80, 80–104 (2013).

    Google Scholar 

  31. 31

    Sotiropoulos, S.N. et al. RubiX: combining spatial resolutions for Bayesian inference of crossing fibres in diffusion MRI. IEEE Trans. Med. Imaging 32, 969–982 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Alexander, D.C. A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn. Reson. Med. 60, 439–448 (2008).

    PubMed  Google Scholar 

  33. 33

    Assaf, Y. et al. AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59, 1347–1354 (2008).

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Koch, M.A. & Finsterbusch, J. Compartment size estimation with double wave vector diffusion-weighted imaging. Magn. Reson. Med. 60, 90–101 (2008).

    PubMed  Google Scholar 

  35. 35

    Alexander, D.C. et al. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52, 1374–1389 (2010).

    PubMed  Google Scholar 

  36. 36

    Basser, P.J. & Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111, 209–219 (1996).

    CAS  PubMed  Google Scholar 

  37. 37

    Basser, P.J., Mattiello, J. & Bihan, D.L. Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994).

    CAS  PubMed  Google Scholar 

  38. 38

    Beaulieu, C. The basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed. 15, 435–455 (2002).

    PubMed  Google Scholar 

  39. 39

    Sagi, Y. et al. Learning in the fast lane: new insights into neuroplasticity. Neuron 73, 1195–1203 (2012).

    CAS  PubMed  Google Scholar 

  40. 40

    Sampaio-Baptista, C. et al. Motor skill learning induces changes in white matter microstructure and myelination. J. Neurosci. 33, 19499–19503 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Song, S.K. et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20, 1714–1722 (2003).

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Song, S.K. et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17, 1429–1436 (2002).

    PubMed  Google Scholar 

  43. 43

    Smith, S.M. et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505 (2006).

    PubMed  Google Scholar 

  44. 44

    Kolind, S.H. & Deoni, S.C. Rapid three-dimensional multicomponent relaxation imaging of the cervical spinal cord. Magn. Reson. Med. 65, 551–556 (2011).

    PubMed  Google Scholar 

  45. 45

    MacKay, A. et al. Insights into brain microstructure from the T2 distribution. Magn. Reson. Imaging 24, 515–525 (2006).

    PubMed  Google Scholar 

  46. 46

    Behrens, T.E. & Johansen-Berg, H. Relating connectional architecture to grey matter function using diffusion imaging. Phil. Trans. R. Soc. Lond. B 360, 903–911 (2005).

    CAS  Google Scholar 

  47. 47

    Biswal, B. et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    CAS  PubMed  Google Scholar 

  48. 48

    Toro, R., Fox, P.T. & Paus, T. Functional coactivation map of the human brain. Cereb. Cortex 18, 2553–2559 (2008).

    PubMed  PubMed Central  Google Scholar 

  49. 49

    Fox, P.T. et al. BrainMap taxonomy of experimental design: description and evaluation. Hum. Brain Mapp. 25, 185–198 (2005).

    PubMed  Google Scholar 

  50. 50

    Smith, S.M. et al. Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 106, 13040–13045 (2009).

    CAS  Google Scholar 

  51. 51

    Biswal, B.B. et al. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. USA 107, 4734–4739 (2010).

    CAS  Google Scholar 

  52. 52

    Smith, S.M. The future of FMRI connectivity. Neuroimage 62, 1257–1266 (2012).

    PubMed  Google Scholar 

  53. 53

    Buckner, R.L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability and relation to Alzheimer's disease. J. Neurosci. 29, 1860–1873 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Logothetis, N.K. & Wandell, B.A. Interpreting the BOLD signal. Annu. Rev. Physiol. 66, 735–769 (2004).

    CAS  PubMed  Google Scholar 

  55. 55

    Power, J.D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).

    PubMed  Google Scholar 

  56. 56

    O'Reilly, J.X. et al. A causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys. Proc. Natl. Acad. Sci. USA 110, 13982–13987 (2013).

    CAS  PubMed  Google Scholar 

  57. 57

    Demeter, S., Rosene, D.L. & Van Hoesen, G.W. Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques. J. Comp. Neurol. 302, 29–53 (1990).

    CAS  PubMed  Google Scholar 

  58. 58

    Tyszka, J.M. et al. Intact bilateral resting-state networks in the absence of the corpus callosum. J. Neurosci. 31, 15154–15162 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Polimeni, J.R. et al. Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52, 1334–1346 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. 60

    Buckner, R.L. et al. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Yeo, B.T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Google Scholar 

  62. 62

    Voogd, J. & van Baarsen, K. The horseshoe-shaped commissure of Wernekinck or the decussation of the brachium conjunctivum methodological changes in the 1840s. Cerebellum 13, 113–120 (2014).

    PubMed  Google Scholar 

  63. 63

    Vincent, J.L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007).

    CAS  PubMed  Google Scholar 

  64. 64

    Deco, G. et al. Identification of optimal structural connectivity using functional connectivity and neural modeling. J. Neurosci. 34, 7910–7916 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Van Essen, D.C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. 66

    Van Essen, D.C. et al. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22, 2241–2262 (2012).

    Google Scholar 

  67. 67

    Tessier-Lavigne, M. & Goodman, C.S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    CAS  PubMed  Google Scholar 

  68. 68

    Wedeen, V.J. et al. The geometric structure of the brain fiber pathways. Science 335, 1628–1634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Lehman, J.F. et al. Rules ventral prefrontal cortical axons use to reach their targets: implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness. J. Neurosci. 31, 10392–10402 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Schmahmann, J.D. et al. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130, 630–653 (2007).

    PubMed  Google Scholar 

  71. 71

    Castellanos, F.X. et al. Clinical applications of the functional connectome. Neuroimage 80, 527–540 (2013).

    CAS  Google Scholar 

  72. 72

    Smith, S.M. et al. Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 17, 666–682 (2013).

    PubMed  PubMed Central  Google Scholar 

  73. 73

    Thompson, P.M. et al. The ENIGMA Consortium. large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 8, 153–182 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. 74

    Salat, D.H. et al. Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann. NY Acad. Sci. 1064, 37–49 (2005).

    CAS  PubMed  Google Scholar 

  75. 75

    Toulmin, H. et al. Specialization and integration of functional thalamocortical connectivity in the human infant. Proc. Natl. Acad. Sci. USA 112, 6485–6490 (2015).

    CAS  PubMed  Google Scholar 

  76. 76

    Behrens, T.E. et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6, 750–757 (2003).

    CAS  PubMed  Google Scholar 

  77. 77

    Johansen-Berg, H. et al. Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb. Cortex 15, 31–39 (2005).

    PubMed  Google Scholar 

  78. 78

    Zhang, D. et al. Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cereb. Cortex 20, 1187–1194 (2010).

    PubMed  Google Scholar 

  79. 79

    Elias, W.J. et al. Validation of connectivity-based thalamic segmentation with direct electrophysiologic recordings from human sensory thalamus. Neuroimage 59, 2025–2034 (2012).

    PubMed  Google Scholar 

  80. 80

    Bhatia, K.D. et al. Diffusion tensor imaging to aid subgenual cingulum target selection for deep brain stimulation in depression. Stereotact. Funct. Neurosurg. 90, 225–232 (2012).

    PubMed  Google Scholar 

  81. 81

    Gutman, D.A. et al. A tractography analysis of two deep brain stimulation white matter targets for depression. Biol. Psychiatry 65, 276–282 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. 82

    Owen, S.L. et al. Pre-operative DTI and probabilisitic tractography in four patients with deep brain stimulation for chronic pain. J. Clin. Neurosci. 15, 801–805 (2008).

    CAS  PubMed  Google Scholar 

  83. 83

    Pouratian, N. et al. Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation. J. Neurosurg. 115, 995–1004 (2011).

    PubMed  Google Scholar 

  84. 84

    Johansen-Berg, H. et al. Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc. Natl. Acad. Sci. USA 101, 13335–13340 (2004).

    CAS  PubMed  Google Scholar 

  85. 85

    Jbabdi, S. & Behrens, T.E. Long-range connectomics. Ann. NY Acad. Sci. 1305, 83–93 (2013).

    PubMed  Google Scholar 

  86. 86

    Kim, J.H. et al. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Neuroimage 49, 2375–2386 (2010).

    PubMed  Google Scholar 

  87. 87

    Klein, J.C. et al. Connectivity-based parcellation of human cortex using diffusion MRI: establishing reproducibility, validity and observer independence in BA 44/45 and SMA/pre-SMA. Neuroimage 34, 204–211 (2007).

    PubMed  Google Scholar 

  88. 88

    Saygin, Z.M. et al. Wired for function: Anatomical connectivity patterns predict face-selectivity in the fusiform gyrus. Nat. Neurosci. 15, 321–327 (2012).

    CAS  Google Scholar 

  89. 89

    Miller, E.K. & Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    CAS  PubMed  Google Scholar 

  90. 90

    Aron, A.R. et al. Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J. Neurosci. 27, 3743–3752 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Forstmann, B.U. et al. Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. Proc. Natl. Acad. Sci. USA 107, 15916–15920 (2010).

    CAS  PubMed  Google Scholar 

  92. 92

    Johansen-Berg, H. et al. Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. Neuroimage 36 (suppl. 2), T16–T21 (2007).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Cohen, M.X. et al. Connectivity-based segregation of the human striatum predicts personality characteristics. Nat. Neurosci. 12, 32–34 (2009).

    CAS  PubMed  Google Scholar 

  94. 94

    Fujisawa, S. & Buzsaki, G. A 4-Hz oscillation adaptively synchronizes prefrontal, VTA and hippocampal activities. Neuron 72, 153–165 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Guitart-Masip, M. et al. Synchronization of medial temporal lobe and prefrontal rhythms in human decision making. J. Neurosci. 33, 442–451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Cohen, M.X. Hippocampal-prefrontal connectivity predicts midfrontal oscillations and long-term memory performance. Curr. Biol. 21, 1900–1905 (2011).

    CAS  PubMed  Google Scholar 

  97. 97

    Berns, G.S. et al. Predictability modulates human brain response to reward. J. Neurosci. 21, 2793–2798 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Pagnoni, G. et al. Activity in human ventral striatum locked to errors of reward prediction. Nat. Neurosci. 5, 97–98 (2002).

    CAS  PubMed  Google Scholar 

  99. 99

    Spanagel, R. & Weiss, F. The dopamine hypothesis of reward: past and current status. Trends Neurosci. 22, 521–527 (1999).

    CAS  PubMed  Google Scholar 

  100. 100

    Chowdhury, R. et al. Dopamine restores reward prediction errors in old age. Nat. Neurosci. 16, 648–653 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Dyrby, T.B. et al. Validation of in vitro probabilistic tractography. Neuroimage 37, 1267–1277 (2007).

    PubMed  Google Scholar 

  102. 102

    Dauguet, J. et al. Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. Neuroimage 37, 530–538 (2007).

    PubMed  Google Scholar 

  103. 103

    Margulies, D.S. & Petrides, M. Distinct parietal and temporal connectivity profiles of ventrolateral frontal areas involved in language production. J. Neurosci. 33, 16846–16852 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Ongür, D., Ferry, A.T. & Price, J.L. Architectonic subdivision of the human orbital and medial prefrontal cortex. J. Comp. Neurol. 460, 425–449 (2003).

    PubMed  Google Scholar 

  105. 105

    Carmichael, S.T. & Price, J.L. Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J. Comp. Neurol. 346, 366–402 (1994).

    CAS  PubMed  Google Scholar 

  106. 106

    Petrides, M. & Pandya, D.N. Distinct parietal and temporal pathways to the homologues of Broca's area in the monkey. PLoS Biol. 7, e1000170 (2009).

    PubMed  PubMed Central  Google Scholar 

  107. 107

    Rushworth, M.F., Behrens, T.E. & Johansen-Berg, H. Connection patterns distinguish 3 regions of human parietal cortex. Cereb. Cortex 16, 1418–1430 (2006).

    CAS  PubMed  Google Scholar 

  108. 108

    Mars, R.B. et al. Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. Proc. Natl. Acad. Sci. USA 110, 10806–10811 (2013).

    CAS  PubMed  Google Scholar 

  109. 109

    Mars, R.B. et al. On the relationship between the “default mode network” and the “social brain”. Front. Hum. Neurosci. 6, 189 (2012).

    PubMed  PubMed Central  Google Scholar 

  110. 110

    Sallet, J. et al. Social network size affects neural circuits in macaques. Science 334, 697–700 (2011).

    CAS  PubMed  Google Scholar 

  111. 111

    Sallet, J. et al. The organization of dorsal frontal cortex in humans and macaques. J. Neurosci. 33, 12255–12274 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Mars, R.B. et al. Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J. Neurosci. 31, 4087–4100 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Caspers, S. et al. Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. Neuroimage 58, 362–380 (2011).

    PubMed  Google Scholar 

  114. 114

    Margulies, D.S. et al. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc. Natl. Acad. Sci. USA 106, 20069–20074 (2009).

    CAS  PubMed  Google Scholar 

  115. 115

    Markov, N.T. et al. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522, 225–259 (2014).

    PubMed  Google Scholar 

  116. 116

    Sotiropoulos, S.N. et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage 80, 125–143 (2013).

    PubMed  PubMed Central  Google Scholar 

  117. 117

    Tournier, J.D., Mori, S. & Leemans, A. Diffusion tensor imaging and beyond. Magn. Reson. Med. 65, 1532–1556 (2011).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the UK Medical Research Council (MR/L009013/1), the James S McDonnell Foundation (JSMF220020372), the Wellcome Trust (WT104765MA), the UK EPSRC EP/L023067/1), the US National Institutes of Health Blueprint for Neuroscience (1U54MH091657-01), the US National Institutes of Health (R01 MH-60974) and the National Institute of Mental Health (P50 MH106435).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saad Jbabdi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jbabdi, S., Sotiropoulos, S., Haber, S. et al. Measuring macroscopic brain connections in vivo. Nat Neurosci 18, 1546–1555 (2015). https://doi.org/10.1038/nn.4134

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing