Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Connectivity of mouse somatosensory and prefrontal cortex examined with trans-synaptic tracing

Abstract

Information processing in neocortical circuits requires integrating inputs over a wide range of spatial scales, from local microcircuits to long-range cortical and subcortical connections. We used rabies virus–based trans-synaptic tracing to analyze the laminar distribution of local and long-range inputs to pyramidal neurons in the mouse barrel cortex and medial prefrontal cortex (mPFC). In barrel cortex, we found substantial inputs from layer 3 (L3) to L6, prevalent translaminar inhibitory inputs, and long-range inputs to L2/3 or L5/6 preferentially from L2/3 or L5/6 of input cortical areas, respectively. These layer-specific input patterns were largely independent of NMDA receptor function in the recipient neurons. mPFC L5 received proportionally more long-range inputs and more local inhibitory inputs than barrel cortex L5. Our results provide new insight into the organization and development of neocortical networks and identify important differences in the circuit organization in sensory and association cortices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Layer-specific input tracing in mouse barrel cortex.
Figure 2: Spatial analyses of synaptic inputs from barrel cortex to starter cells in L2/3, L5 and L6.
Figure 3: Analysis of local inhibitory inputs to starter cells in L2/3, L5 and L6.
Figure 4: Laminar analyses of long-range inputs to starter cells in L2/3, L5 and L6.
Figure 5: Layer-specific tracing from starter cells lacking GluN1.
Figure 6: Local input to mPFC L5.
Figure 7: Long-range input to mPFC L5.
Figure 8: Summary of main findings.

Similar content being viewed by others

References

  1. Woolsey, T.A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).

    Article  CAS  PubMed  Google Scholar 

  2. Simons, D.J. Response properties of vibrissa units in rat SI somatosensory neocortex. J. Neurophysiol. 41, 798–820 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Guo, Z.V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Fuster, J.M. The prefrontal cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Academic Press, Philadelphia, 2008).

  5. Douglas, R.J.M., Martin, K.A.C. & Whitteridge, D. A canonical microcircuit for the neocortex. Neural Comput. 1, 480–488 (1989).

    Article  Google Scholar 

  6. Thomson, A.M. & Lamy, C. Functional maps of neocortical local circuitry. Front Neurosci 1, 19–42 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Douglas, R.J. & Martin, K.A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Lefort, S., Tomm, C., Floyd Sarria, J.C. & Petersen, C.C. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Hooks, B.M. et al. Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical areas. PLoS Biol. 9, e1000572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gilbert, C.D. & Wiesel, T.N. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280, 120–125 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Brown, S.P. & Hestrin, S. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457, 1133–1136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Callaway, E.M. & Katz, L.C. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA 90, 7661–7665 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hooks, B.M. et al. Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J. Neurosci. 33, 748–760 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kätzel, D., Zemelman, B.V., Buetfering, C., Wolfel, M. & Miesenbock, G. The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nat. Neurosci. 14, 100–107 (2011).

    Article  PubMed  CAS  Google Scholar 

  15. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Wickersham, I.R. et al. Monosynaptic restriction of trans-synaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Callaway, E.M. & Luo, L. Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J. Neurosci. 35, 8979–8985 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyamichi, K. et al. Dissecting local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output. Neuron 80, 1232–1245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Olsen, S.R., Bortone, D.S., Adesnik, H. & Scanziani, M. Gain control by layer six in cortical circuits of vision. Nature 483, 47–52 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, J., Matney, C.J., Blankenship, A., Hestrin, S. & Brown, S.P. Layer 6 corticothalamic neurons activate a cortical output layer, layer 5a. J. Neurosci. 34, 9656–9664 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Greig, L.C., Woodworth, M.B., Galazo, M.J., Padmanabhan, H. & Macklis, J.D. Molecular logic of neocortical projection neuron specification, development and diversity. Nat. Rev. Neurosci. 14, 755–769 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Gerfen, C.R., Paletzki, R. & Heintz, N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80, 1368–1383 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Bortone, D.S., Olsen, S.R. & Scanziani, M. Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron 82, 474–485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feldmeyer, D. Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat. 6, 24 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang, Z.W. & Deschenes, M. Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J. Neurosci. 17, 6365–6379 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Isaacson, J.S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, J. & Schwark, H.D. Distribution and proportions of GABA-immunoreactive neurons in cat primary somatosensory cortex. J. Comp. Neurol. 343, 353–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Welker, E., Hoogland, P.V. & Van der Loos, H. Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse. Exp. Brain Res. 73, 411–435 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Porter, L.L. & White, E.L. Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse. J. Comp. Neurol. 214, 279–289 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Mao, T. et al. Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72, 111–123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Constantinople, C.M. & Bruno, R.M. Deep cortical layers are activated directly by thalamus. Science 340, 1591–1594 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wimmer, V.C., Bruno, R.M., de Kock, C.P., Kuner, T. & Sakmann, B. Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cereb. Cortex 20, 2265–2276 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Beierlein, M. & Connors, B.W. Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex. J. Neurophysiol. 88, 1924–1932 (2002).

    Article  PubMed  Google Scholar 

  34. Viaene, A.N., Petrof, I. & Sherman, S.M. Synaptic properties of thalamic input to layers 2/3 and 4 of primary somatosensory and auditory cortices. J. Neurophysiol. 105, 279–292 (2011).

    Article  PubMed  Google Scholar 

  35. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Bi, G. & Poo, M. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24, 139–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Dantzker, J.L. & Callaway, E.M. The development of local, layer-specific visual cortical axons in the absence of extrinsic influences and intrinsic activity. J. Neurosci. 18, 4145–4154 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Datwani, A., Iwasato, T., Itohara, S. & Erzurumlu, R.S. NMDA receptor–dependent pattern transfer from afferents to postsynaptic cells and dendritic differentiation in the barrel cortex. Mol. Cell. Neurosci. 21, 477–492 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Espinosa, J.S., Wheeler, D.G., Tsien, R.W. & Luo, L. Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron 62, 205–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iwasato, T. et al. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406, 726–731 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Felipe, J., Marco, P., Fairen, A. & Jones, E.G. Inhibitory synaptogenesis in mouse somatosensory cortex. Cereb. Cortex 7, 619–634 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. White, E.L., Weinfeld, L. & Lev, D.L. A survey of morphogenesis during the early postnatal period in PMBSF barrels of mouse SmI cortex with emphasis on barrel D4. Somatosens. Mot. Res. 14, 34–55 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Hoover, W.B. & Vertes, R.P. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct. Funct. 212, 149–179 (2007).

    Article  PubMed  Google Scholar 

  44. Vélez-Fort, M. et al. The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing. Neuron 83, 1431–1443 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zarrinpar, A. & Callaway, E.M. Local connections to specific types of layer 6 neurons in the rat visual cortex. J. Neurophysiol. 95, 1751–1761 (2006).

    Article  PubMed  Google Scholar 

  46. London, M. & Hausser, M. Dendritic computation. Annu. Rev. Neurosci. 28, 503–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Dilgen, J., Tejeda, H.A. & O'Donnell, P. Amygdala inputs drive feedforward inhibition in the medial prefrontal cortex. J. Neurophysiol. 110, 221–229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Marco García, N.V., Priya, R., Tuncdemir, S.N., Fishell, G. & Karayannis, T. Sensory inputs control the integration of neurogliaform interneurons into cortical circuits. Nat. Neurosci. 18, 393–401 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates, Second Edition (Academic Press, 2001).

  51. Gong, S. et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J. Neurosci. 27, 9817–9823 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tsien, J.Z., Huerta, P.T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor–dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Navarro-Quiroga, I., Chittajallu, R., Gallo, V. & Haydar, T.F. Long-term, selective gene expression in developing and adult hippocampal pyramidal neurons using focal in utero electroporation. J. Neurosci. 27, 5007–5011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Osakada, F. & Callaway, E.M. Design and generation of recombinant rabies virus vectors. Nat. Protoc. 8, 1583–1601 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Weissbourd, B. et al. Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron 83, 645–662 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brecht, M. et al. Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J. Comp. Neurol. 479, 360–373 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Miyamichi for critical discussions while designing experiments, members of the Luo laboratory and K. Svoboda for helpful comments on the manuscript, P. Joshi and S. McConnell (Department of Biology, Stanford University) for Rbp4Cre and Ntsr1Cre mice, and C. Gerfen (Laboratory of Systems Neuroscience, National Institute of Mental Health) for SepW1Cre mice. L.L is an investigator of the Howard Hughes Medical Institute. This work was supported by US National Institutes of Health grants T32NS007280-27 and F32NS087860 (L.A.D.), F31DC013240 (D.S.B.) and R01-NS050835 (L.L.).

Author information

Authors and Affiliations

Authors

Contributions

L.A.D., D.S.B. and L.L. designed the experiments. L.A.D. and D.S.B. performed and analyzed layer-specific trans-synaptic tracing experiments. L.A.D. performed slice recording and CRACM experiments. K.D. performed and analyzed in situ hybridization experiments. L.A.D., D.S.B. and L.L wrote the manuscript.

Corresponding author

Correspondence to Liqun Luo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Controls for rabies tracing

(a) Characterization of reagents and procedures. L2/3 neurons were electroporated in utero with pCAG-tdTomato and Cre-driver lines were crossed to Ai14 mice. Images show that tdTomato expression in barrel cortex was restricted to the intended layers at P21, and both Cre lines were active at P1. Individual barrels in L4 at P21 are outlined with dotted lines. (b) We observed 0 mCherry-positive or GFP-positive cells when tracing from wild-type mice that did not express Cre (n = 3 mice) using the trans-synaptic tracing experimental conditions. (c) Example image from a control tracing experiment when AAV carrying CAG-FLEx-G was omitted. Graphs show quantification of the number of red+green (yellow cells) divided by total green cells. (d) Tables list the lower limits (upper) and thicknesses (lower) of each layer for each set of experiments (IUEp-Cre, n = 6 mice; Rbp4Cre, n = 9 mice; Ntsr1Cre, n = 9 mice, layer markers, n = 6–8 sections from 2 mice). There were no significant differences between layer limits (Two-way ANOVA, F = 2.66, P = 0.07) or layer thicknesses (Two-way ANOVA, F = 1.39, P = 0.25). (e) Staining for layer markers Cux1 (L2-4) and Ctip2 (L5b/6) in barrel cortex. Scale bars represent 200 μm. Summary statistics presented as mean ± s.e.m. See Supplementary Table 6 for exact test results and P values.

Supplementary Figure 2 Characterization of Cre driver lines

(a) Characterization of SepW1Cre. SepW1Cre mice were injected with AAV carrying CAG-FLEx-TC66T-mCherry in barrel cortex at P25 and perfused at P40. Sections of barrel cortex were stained with antibodies against NeuN (n = 8 sections from 2 mice). (b-e) Characterization of Rbp4Cre. Brain sections from P40 Rbp4Cre;RosaAi14 mice were stained for NeuN or Ctip2. (b) NeuN staining in barrel cortex (n = 6 slices from 2 mice). (c) Ctip2 staining in barrel cortex (n = 12 slices from 2 mice). (d) NeuN staining in mPFC (n = 5 slices from 2 mice). (e) Ctip2 staining in mPFC (n = 5 slices from 2 mice). (f) Characterization of Ntsr1Cre. Barrel cortex sections from P40 Ntsr1Cre;RosaAi14 mice were stained for NeuN (n = 10 slices from 2 mice). (g) Quantification of marker colocalization. Summary statistics presented as mean ± s.e.m.

Supplementary Figure 3 Spatial analyses of Gad+ and Gad synaptic inputs from barrel cortex to starter cells in L2/3, L5, and L6 along the M-L Axis

(a-f) Heat maps showing distribution of Gad inputs (upper panels), Gad+ inputs (middle panels) and starter cells (SCs, lower panels) in each layer along the M-L axis (n = 3 mice each). Inputs to L2/3 (a), L5 (c), and L6 (e) scaled to highest fraction of Gad+ inputs. Inputs to L2/3 (b), L5 (d), and L6 (f) scaled to highest fraction of Gad inputs. Colors represent fraction of barrel cortex inputs within the sections analyzed. Bin widths are 120 μm.

Supplementary Figure 4 Characterization of the EPSCs in control and GluN1-lacking neurons

(a) Example EPSCs recorded from a WT L6 neuron voltage-clamped at +40 mV while stimulating white matter. DNQX (blue trace) reduced the amplitude of the EPSC. (b) Example EPSCs recorded from a GluN1fl/Δ L6 neuron voltage-clamped at +40 mV while stimulating white matter. DNQX (blue trace) completely abolished the EPSC. (c) Quantification of fraction of EPSC remaining after DNQX wash-in (Control: 0.20 ± 0.07, n = 4 cells, from 2 mice; Grin1fl/Δ: 0.005 ± 0.001, n = 4 cells from 2 mice; P = 0.04, Student’s t-test). Summary statistics presented as mean s.e.m. See Supplementary Table 6 for exact test results and P values.

Supplementary Figure 5 Layer assignments for tracing from starter cells lacking GluN1 and comparison of long-range inputs to control and GluN1-lacking starter cells

(a) Layer limits were assigned based on the DAPI signal for each section. Table lists the lower limits of each layer for each set of experiments (IUEp-Cre;GluN1fl/Δ, n = 4 mice; Rbp4Cre;GluN1fl/Δ, n = 6 mice; Ntsr1Cre;GluN1fl/Δ, n = 7 mice). (b) Comparison of layer limits between control and GluN1fl/Δ animals. (c) Layer thicknesses derived from the limits based on DAPI signal within each section. Table lists the thickness of each layer for each set of experiments (IUEp-Cre;GluN1fl/Δ, n = 4 mice; Rbp4Cre;GluN1fl/Δ, n = 6 mice; Ntsr1Cre;GluN1fl/Δ, n = 7 mice). (d) Comparison of layer thickness between control and GluN1fl/Δ animals. (e) Laminar analysis of long-range inputs from to control (colors) and GluN1-lacking (black) starter cells in L5 from S1 (control: n = 9 mice; GluN1fl/Δ: n = 4 mice), S2 (control: n = 5 mice; GluN1fl/Δ: n = 5 mice; L6 comparison, P = 0.004), M1 (control: n = 7 mice; GluN1fl/Δ: n = 4 mice), and M2 (control: n = 5 mice; GluN1fl/Δ: n = 3 mice). (f) Laminar analysis of long-range inputs from to control (colors) and GluN1-lacking (black) starter cells in L6 from S1 (control: n = 9 mice; GluN1fl/Δ: n = 7 mice), S2 (control: n = 9 mice; GluN1fl/Δ: n = 7 mice; L6 comparison, P = 0.003), M1 (control: n = 8 mice; GluN1fl/Δ: n = 7 mice), and M2 (control: n = 8 mice; GluN1fl/Δ: n = 6 mice). * denotes significant P values from multiple t-tests with Holm-Sidak correction for multiple comparisons (α=0.05). Summary statistics presented as mean ± s.e.m. See Supplementary Table 6 for exact test results and P values.

Supplementary Figure 6 Controls for layer-specific tracing to mPFC

(a) Example images showing staining for layer markers Cux1 (L3) and Ctip2 (L5b/6). Scale bar represents 100 μm. (b) Summary of layer lower limits (upper) assigned based on DAPI or layer markers and layer thickness (lower) assigned based on DAPI or layer markers. (c) Example images showing rabies tracing in mPFC without CAG-FLEx-G. Green rabies-infected neurons have almost 100% overlap with red TVA66T-mCherry-positive neurons. (d) Results of control tracing experiments (n = 3 mice) without rabies glycoprotein, which mediates trans-synaptic spread. CAG-FLEx-TVA66T-mCherry was injected into Rbp4Cre animals in mPFC. Two weeks later, RVdG-EGFP was injected into the same location. Graphs show quantification of the sum of red+green (yellow) divided by the total green cells. (e) Comparison of layer distribution of total inputs to L5 of mPFC and barrel cortex, normalized by layer thickness for each respective area (mPFC: n = 4 mice; BC: n = 8 mice; L1: P = 6.31x10-6, L3: P = 0.0002). * denotes significant P values from multiple t-tests with Holm-Sidak correction for multiple comparisons (α=0.05). Summary statistics presented as mean ± s.e.m. See Supplementary Table 6 for exact test results and P values.

Supplementary Figure 7 Raw numbers of inputs and starter cells for tracing in Barrel Cortex and mPFC

Plots of raw numbers of inputs vs. starter cells (left) and convergence index (# inputs cells /# starter cells) (right) for barrel cortex (a) L2/3, (b) L5, and (c) L6, and (d) mPFC L5 tracing experiments. Summary statistics presented as mean±SEM.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–6 (PDF 1567 kb)

Supplementary Methods Checklist (PDF 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeNardo, L., Berns, D., DeLoach, K. et al. Connectivity of mouse somatosensory and prefrontal cortex examined with trans-synaptic tracing. Nat Neurosci 18, 1687–1697 (2015). https://doi.org/10.1038/nn.4131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing