Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Instrumental learning of traits versus rewards: dissociable neural correlates and effects on choice

This article has been updated

Abstract

Humans learn about people and objects through positive and negative experiences, yet they can also look beyond the immediate reward of an interaction to encode trait-level attributes. We found that perceivers encoded both reward and trait-level information through feedback in an instrumental learning task, but relied more heavily on trait representations in cross-context decisions. Both learning types implicated ventral striatum, but trait learning also recruited a network associated with social impression formation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Statistical parametric maps showing neural regions where activity correlated with prediction errors during feedback (n = 30).
Figure 2: Test phase of task.
Figure 3: Post-task preferences for a future cooperative interaction featuring no economic rewards.

Change history

  • 06 August 2015

    In the HTML version of this article initially published, the first item was missing in the list of six GLM parametric regressors for the fMRI data analysis in the Online Methods. The error has been corrected in the HTML version of the article.

References

  1. Sutton, R.S. & Barto, A.G. Reinforcement Learning: An Introduction (Cambridge Univ. Press, 1998).

  2. Rim, S., Uleman, J.S. & Trope, Y. J. Exp. Soc. Psychol. 45, 1088–1097 (2009).

    Article  Google Scholar 

  3. Eysenck, H.J. Dimensions of Personality (Routledge & Kegan Paul, London, 1947).

  4. Heider, F. The Psychology of Interpersonal Relations (New York, Wiley, 1958).

  5. Jones, E.E. & Davis, K.E. Adv. Exp. Soc. Psychol. 2, 219–266 (1965).

    Google Scholar 

  6. Baetens, K., Ma, N., Steen, J. & Van Overwalle, F. Soc. Cogn. Affect. Neurosci. 9, 817–824 (2014).

    Article  Google Scholar 

  7. Garrison, J., Erdeniz, B. & Done, J. Neurosci. Biobehav. Rev. 37, 1297–1310 (2013).

    Article  Google Scholar 

  8. Mende-Siedlecki, P., Baron, S.G. & Todorov, A. J. Neurosci. 33, 19406–19415 (2013).

    Article  CAS  Google Scholar 

  9. Mende-Siedlecki, P., Cai, Y. & Todorov, A. Soc. Cogn. Affect. Neurosci. 8, 623–631 (2013).

    Article  Google Scholar 

  10. Ma, N. et al. Soc. Cogn. Affect. Neurosci. 7, 937–950 (2012).

    Article  Google Scholar 

  11. Cloutier, J., Gabrieli, J.D.E., O'Young, D. & Ambady, N. Neuroimage 57, 583–588 (2011).

    Article  CAS  Google Scholar 

  12. Valentin, V.V., Dickinson, A. & O'Doherty, J.P. J. Neurosci. 27, 4019–4026 (2007).

    Article  CAS  Google Scholar 

  13. Daw, N.D., Gershman, S.J., Seymour, B., Dayan, P. & Dolan, R.J. Neuron 69, 1204–1215 (2011).

    Article  CAS  Google Scholar 

  14. Zhu, L., Mathewson, K.E. & Hsu, M. Proc. Natl. Acad. Sci. USA 109, 1419–1424 (2012).

    Article  CAS  Google Scholar 

  15. Diuk, C., Tsai, K., Wallis, J., Botvinick, M. & Niv, Y. J. Neurosci. 33, 5797–5805 (2013).

    Article  CAS  Google Scholar 

  16. Delgado, M.R., Frank, R.H. & Phelps, E.A. Nat. Neurosci. 8, 1611–1618 (2005).

    Article  CAS  Google Scholar 

  17. Sanfey, A.G., Rilling, J.K., Aronson, J.A., Nystrom, L.E. & Cohen, J.D. Science 300, 1755–1758 (2003).

    CAS  Google Scholar 

  18. Amodio, D.M. & Frith, C.D. Nat. Rev. Neurosci. 7, 268–277 (2006).

    Article  CAS  Google Scholar 

  19. Amodio, D.M. & Ratner, K.G. Curr. Dir. Psychol. Sci. 20, 143–148 (2011).

    Article  Google Scholar 

  20. Robalino, N. & Robson, A. Phil. Trans. R. Soc. Lond. B 367, 2224–2233 (2012).

    Article  Google Scholar 

  21. Minear, M. & Park, D.C. Behav. Res. Methods Instrum. Comput. 36, 630–633 (2004).

    Article  Google Scholar 

  22. Brainard, D.H. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  Google Scholar 

  23. Pelli, D.G. Spat. Vis. 10, 437–442 (1997).

    Article  CAS  Google Scholar 

  24. Kleiner, M., Brainard, D. & Pelli, D. Perception 36 (ECVP Abstract Supplement) (2007).

  25. Doll, B.B., Simon, D.A. & Daw, N.D. Curr. Opin. Neurobiol. 22, 1075–1081 (2012).

    Article  CAS  Google Scholar 

  26. Decker, J.H., Lourenco, F.S., Doll, B.B. & Hartley, C.A. Cogn. Affect. Behav. Neurosci. 15, 310–320 (2015).

    Article  Google Scholar 

  27. Daw, N.D. Decision Making, Affect, and Learning: Attention and Performance 23, 3–38 (2011).

    Article  Google Scholar 

  28. Stephan, K.E., Penny, W.D., Daunizeau, J., Moran, R.J. & Friston, K.J. Neuroimage 46, 1004–1017 (2009).

    Article  Google Scholar 

  29. Wimmer, G.E., Daw, N.D. & Shohamy, D. Eur. J. Neurosci. 35, 1092–1104 (2012).

    Article  Google Scholar 

  30. Holmes, A.P. & Friston, K.J. Neuroimage 7, S754 (1998).

    Article  Google Scholar 

  31. Friston, K.J., Worsley, K.J., Frackowiak, R.S.J., Mazziotta, J.C. & Evans, A.C. Hum. Brain Mapp. 1, 210–220 (1994).

    Article  CAS  Google Scholar 

  32. Tzourio-Mazoyer, N. et al. Neuroimage 15, 273–289 (2002).

    Article  CAS  Google Scholar 

  33. Brett, M., Anton, J.-L., Valabregue, R. & Poline, J.-B. Neuroimage 16, S497 (2002).

    Google Scholar 

  34. d'Acremont, M., Schultz, W. & Bossaerts, P. J. Neurosci. 33, 10887–10897 (2013).

    Article  CAS  Google Scholar 

  35. O'Reilly, J.X. et al. Proc. Natl. Acad. Sci. USA 110, E3660–E3669 (2013).

    Article  CAS  Google Scholar 

  36. Esterman, M., Tamber-Rosenau, B.J., Chiu, Y.-C. & Yantis, S. Neuroimage 50, 572–576 (2010).

    Article  Google Scholar 

  37. R Core Team http://cran.r-project.org/ (2014).

  38. Bates, D., Maechler, M., Bolker, B. & Walker, S. R Package Version 1.1-7 http://cran.r-project.org/package=lme4 (2014).

  39. Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H.B. R Package Version 2.0-11 http://cran.r-project.org/package=lmerTest (2014).

  40. Aiken, L.S. & West, S.G. Multiple Regression: Testing and Interpreting Interactions (Sage, 1991).

  41. Cohen, J., Cohen, P., West, S.G. & Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (Routledge, 2013).

  42. Howell, D. Statistical Methods for Psychology (Cengage Learning, Belmont, California, USA, 2010).

Download references

Acknowledgements

We thank J. Rosenthal for assistance with data collection, and members of the New York University Social Neuroscience Laboratory and P. Mende-Siedlecki for comments on the manuscript. This work was funded by the New York University Center for Brain Imaging and by the US National Science Foundation (grant BCS 0847350).

Author information

Authors and Affiliations

Authors

Contributions

L.M.H., B.B.D. and D.M.A. designed the research; L.M.H. collected the data; L.M.H. and B.B.D. analyzed the data; L.M.H., B.B.D. and D.M.A. wrote the manuscript.

Corresponding authors

Correspondence to Leor M Hackel or David M Amodio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Experimental task, in which participants viewed target pairs and chose with which to interact.

(A) Human faces and slot machines were associated with different levels of generosity (.2 or.4) and reward value (10 or 20 points). (B) Training phase: participants received feedback indicating the reward obtained and the target’s generosity. (C) Test phase: participants chose a target while viewing the point pool available for human deciders to share or slots to pay out. No feedback was provided.

Supplementary Figure 2 Group-level activation associated with average prior reward value during the test phase.

Statistical parametric map showing neural regions where activity correlated with the average prior reward value of chosen and non-chosen options in the test phase (pFWE <.05, whole-brain corrected). A cluster of activation extended across (A) hippocampus (HC), (B) posterior putamen, and (C) insula.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 1–8 (PDF 1764 kb)

Supplementary Methods Checklist (PDF 483 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hackel, L., Doll, B. & Amodio, D. Instrumental learning of traits versus rewards: dissociable neural correlates and effects on choice. Nat Neurosci 18, 1233–1235 (2015). https://doi.org/10.1038/nn.4080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4080

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing