Abstract
Hippocampal place cells assemblies are believed to support the cognitive map, and their reactivations during sleep are thought to be involved in spatial memory consolidation. By triggering intracranial rewarding stimulations by place cell spikes during sleep, we induced an explicit memory trace, leading to a goal-directed behavior toward the place field. This demonstrates that place cells' activity during sleep still conveys relevant spatial information and that this activity is functionally significant for navigation.
Access options
Subscribe to Journal
Get full journal access for 1 year
$225.00
only $18.75 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1.
O'Keefe, J. & Nadel, L.The Hippocampus as a Cognitive Map 1–570 (Oxford University Press, 1978).
- 2.
Lee, A.K. & Wilson, M.A. Neuron 36, 1183–1194 (2002).
- 3.
Wilson, M.A. & McNaughton, B.L. Science 265, 676–679 (1994).
- 4.
Buzsáki, G. Neuroscience 31, 551–570 (1989).
- 5.
Girardeau, G., Benchenane, K., Wiener, S.I., Buzsáki, G. & Zugaro, M.B. Nat. Neurosci. 12, 1222–1223 (2009).
- 6.
Ego-Stengel, V. & Wilson, M.A. Hippocampus 20, 1–10 (2010).
- 7.
Lenck-Santini, P.-P., Muller, R.U., Save, E. & Poucet, B. J. Neurosci. 22, 9035–9047 (2002).
- 8.
Jeffery, K.J., Gilbert, A., Burton, S. & Strudwick, A. Hippocampus 13, 175–189 (2003).
- 9.
Delgado, J.M.R., Johnston, V.S., Wallace, J.D. & Bradley, R.J. Brain Res. 22, 347–362 (1970).
- 10.
Shinkman, P.G., Bruce, C.J. & Pfingst, B.E. Science 184, 1194–1196 (1974).
- 11.
Jackson, A., Mavoori, J. & Fetz, E.E. Nature 444, 56–60 (2006).
- 12.
Fetz, E.E. Science 163, 955–958 (1969).
- 13.
Eichenbaum, H. Behav. Brain Res. 103, 123–133 (1999).
- 14.
Carlezon, W.A. & Chartoff, E.H. Nat. Protoc. 2, 2987–2995 (2007).
- 15.
Kobayashi, T., Nishijo, H., Fukuda, M., Bures, J. & Ono, T. J. Neurophysiol. 78, 597–613 (1997).
- 16.
Dickinson, A. & Balleine, B.W. Anim. Learn. Behav. 22, 1–18 (1994).
- 17.
Hennevin, E. & Hars, B. Psychobiology (Austin, Tex.) 20, 166–176 (1992).
- 18.
Weinberger, N.M., Gold, P.E. & Sternberg, D.B. Science 223, 605–607 (1984).
- 19.
Arzi, A. et al. Nat. Neurosci. 15, 1460–1465 (2012).
- 20.
Pavlides, C. & Winson, J. J. Neurosci. 9, 2907–2918 (1989).
- 21.
Carlezon, W.A. & Chartoff, E.H. Nat. Protoc. 2, 2987–2995 (2007).
- 22.
McNaughton, N. & Sedgwick, E.M. Neuroscience 3, 629–632 (1978).
- 23.
Paxinos, G. & Bindra, D. Physiol. Behav. 5, 227–231 (1970).
- 24.
O'Keefe, J. & Nadel, L.The Hippocampus as a Cognitive Map 1–570 (Oxford University Press, 1978).
- 25.
Harris, K.D., Henze, D.A., Csicsvari, J., Hirase, H. & Buzsáki, G. J. Neurophysiol. 84, 401–414 (2000).
- 26.
Hazan, L., Zugaro, M.B. & Buzsáki, G. J. Neurosci. Methods 155, 207–216 (2006).
- 27.
Schmitzer-Torbert, N., Jackson, J., Henze, D., Harris, K. & Redish, A.D. Neuroscience 131, 1–11 (2005).
- 28.
Delgado, J.M.R., Johnston, V.S., Wallace, J.D. & Bradley, R.J. Brain Res. 22, 347–362 (1970).
- 29.
Shinkman, P.G., Bruce, C.J. & Pfingst, B.E. Science 184, 1194–1196 (1974).
- 30.
Fetz, E.E. & Finocchio, D.V. Science 174, 431–435 (1971).
- 31.
Jackson, A., Mavoori, J. & Fetz, E.E. Nature 444, 56–60 (2006).
- 32.
Harris, K.D., Hirase, H., Leinekugel, X., Henze, D.A. & Buzsáki, G. Neuron 32, 141–149 (2001).
- 33.
Muller, R.U., Kubie, J.L. & Ranck, J.B.J. J. Neurosci. 7, 1935–1950 (1987).
- 34.
Maei, H.R., Zaslavsky, K., Teixeira, C.M. & Frankland, P.W. Front. Integr. Neurosci. 3, 4 (2009).
- 35.
Nieuwenhuis, S., Forstmann, B.U. & Wagenmakers, E. Nat. Neurosci. 14, 1105–1107 (2011).
Acknowledgements
We thank F.P. Battaglia, M.B. Zugaro, P. Faure, L. Roux, S. Bagur and S.I. Wiener for discussions, and A. Peyrache for discussion and critical readings of an earlier version of the manuscript. Some experiments were done with software developed by G. Cournelle and A. Baelde, engineering students from the ESPCI-ParisTech. This work was supported by the Fondation pour la Recherche Médicale DEQ20120323730, France, by the National Agency for Research ANR-REG-071220-01-01, France, by the CNRS: Programmes Interdisciplinaires de Recherche (Neuro-IC), ATIP-Avenir (2014) and by the city of Paris (Grant Emergence 2014). This work also received support under the program Investissements d'Avenir launched by the French Government and implemented by the ANR, with the references: ANR-10-LABX-54 MEMO LIFE and ANR-11-IDEX-0001-02 PSL* Research University. G.d.L. and M.M.L. were funded by the Ministère de l'Enseignement Supérieur et de la Recherche, France.
Author information
Author notes
- Gaetan de Lavilléon
- & Marie Masako Lacroix
These authors contributed equally to this work.
- Laure Rondi-Reig
- & Karim Benchenane
These authors jointly directed this work.
Affiliations
Team Memory, Oscillations and Brain States (MOBs), Brain Plasticity Unit, CNRS UMR 8249, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris, France.
- Gaetan de Lavilléon
- , Marie Masako Lacroix
- & Karim Benchenane
Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team, CNRS UMR 8246; INSERM, UMR-S 1130; Sorbonne Universités, University Pierre and Marie Curie, Paris, France.
- Gaetan de Lavilléon
- , Marie Masako Lacroix
- , Laure Rondi-Reig
- & Karim Benchenane
Authors
Search for Gaetan de Lavilléon in:
Search for Marie Masako Lacroix in:
Search for Laure Rondi-Reig in:
Search for Karim Benchenane in:
Contributions
K.B. designed the experiment. G.d.L. and M.M.L. did the experiments. K.B., G.d.L. and M.M.L. analyzed the data. K.B., G.d.L., M.M.L. and L.R.-R. wrote the manuscript.
Competing interests
The authors declare no competing financial interests.
Corresponding author
Correspondence to Karim Benchenane.
Integrated supplementary information
Supplementary figures
- 1.
The place preference tasks.
- 2.
Characteristics of sleep pairing sessions with rewarding and non-rewarding MFB stimulations, showing similar properties and absence of sleep perturbation.
- 3.
Place cells activity and theta oscillations remain stable after MFB stimulations.
- 4.
MFB stimulation does not alter sleep sharp-wave ripples (SPW-Rs), nor associated neuronal activity.
- 5.
Offline spike sorting and online spike detection.
- 6.
Additional statistical quantification of the place preference induced by the sleep-pairing protocol.
- 7.
Partial correlations of occupancy and firing map before, during and after wake-pairing protocol.
- 8.
Comparison between place preference tasks in all configurations and effect of the circadian rhythm.
- 9.
Quantification of behavioral measures expressed in the sleep-pairing protocol (n = 5) and normalization methods.
- 10.
Fine characterization of mouse behavior during experiments
Supplementary information
PDF files
- 1.
Supplementary Text and Figures
Supplementary Figures 1–10
- 2.
Supplementary Methods Checklist
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.
About this article
Further reading
-
Sleepers track informative speech in a multitalker environment
Nature Human Behaviour (2019)
-
Lack of frequency-tagged magnetic responses suggests statistical regularities remain undetected during NREM sleep
Scientific Reports (2018)
-
Acetylcholine-modulated plasticity in reward-driven navigation: a computational study
Scientific Reports (2018)
-
Memory corticalization triggered by REM sleep: mechanisms of cellular and systems consolidation
Cellular and Molecular Life Sciences (2018)
-
Formation and suppression of acoustic memories during human sleep
Nature Communications (2017)