Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genotype to phenotype relationships in autism spectrum disorders

Abstract

Autism spectrum disorders (ASDs) are characterized by phenotypic and genetic heterogeneity. Our analysis of functional networks perturbed in ASD suggests that both truncating and nontruncating de novo mutations contribute to autism, with a bias against truncating mutations in early embryonic development. We find that functional mutations are preferentially observed in genes likely to be haploinsufficient. Multiple cell types and brain areas are affected, but the impact of ASD mutations appears to be strongest in cortical interneurons, pyramidal neurons and the medium spiny neurons of the striatum, implicating cortical and corticostriatal brain circuits. In females, truncating ASD mutations on average affect genes with 50–100% higher brain expression than in males. Our results also suggest that truncating de novo mutations play a smaller role in the etiology of high-functioning ASD cases. Overall, we find that stronger functional insults usually lead to more severe intellectual, social and behavioral ASD phenotypes.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The network implicated by NETBAG+ based on ASD-associated de novo SNVs and CNVs from recent studies (network is comprised of 159 genes, P = 0.036).
Figure 2: Temporal gene expression profiles in the human brain across developmental stages for implicated gene sets.
Figure 3: Cell-type expression biases for network mutations and recurrent truncating mutations.
Figure 4: Average numbers of de novo mutations per individual for probands with different IQs.
Figure 5: Temporal gene expression profiles in the human brain across developmental stages for genes affected in subsets of probands with different phenotypic scores.

Accession codes

Accessions

Gene Expression Omnibus

References

  1. 1

    Abrahams, B.S. & Geschwind, D.H. Advances in autism genetics: on the threshold of a new neurobiology. Nat. Rev. Genet. 9, 341–355 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Berg, J.M. & Geschwind, D.H. Autism genetics: searching for specificity and convergence. Genome Biol. 13, 247 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. 3

    Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Freitag, C.M. The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol. Psychiatry 12, 2–22 (2007).

    CAS  PubMed  Google Scholar 

  5. 5

    Geschwind, D.H. Genetics of autism spectrum disorders. Trends Cogn. Sci. 15, 409–416 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Levy, D. et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 70, 886–897 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    O'Roak, B.J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Sanders, S.J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Veltman, J.A. & Brunner, H.G. De novo mutations in human genetic disease. Nat. Rev. Genet. 13, 565–575 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    McClellan, J. & King, M.C. Genetic heterogeneity in human disease. Cell 141, 210–217 (2010).

    CAS  PubMed  Google Scholar 

  11. 11

    O'Roak, B.J. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338, 1619–1622 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Gilman, S.R. et al. Diverse types of genetic variation converge on functional gene networks involved in schizophrenia. Nat. Neurosci. 15, 1723–1728 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Gilman, S.R. et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70, 898–907 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Kelleher, R.J. III & Bear, M.F. The autistic neuron: troubled translation? Cell 135, 401–406 (2008).

    CAS  PubMed  Google Scholar 

  15. 15

    Zoghbi, H.Y. & Bear, M.F. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4, a009886 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Kang, H.J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Doyle, J.P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Fischbach, G.D. & Lord, C. The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron 68, 192–195 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Huang, D.W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

  20. 20

    Krey, J.F. & Dolmetsch, R.E. Molecular mechanisms of autism: a possible role for Ca2+ signaling. Curr. Opin. Neurobiol. 17, 112–119 (2007).

    CAS  PubMed  Google Scholar 

  21. 21

    Betancur, C., Sakurai, T. & Buxbaum, J.D. The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends Neurosci. 32, 402–412 (2009).

    CAS  PubMed  Google Scholar 

  22. 22

    Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Ronan, J.L., Wu, W. & Crabtree, G.R. From neural development to cognition: unexpected roles for chromatin. Nat. Rev. Genet. 14, 347–359 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Santini, E. et al. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493, 411–415 (2013).

    CAS  PubMed  Google Scholar 

  25. 25

    Ziff, E.B. Enlightening the postsynaptic density. Neuron 19, 1163–1174 (1997).

    CAS  PubMed  Google Scholar 

  26. 26

    Huang, N., Lee, I., Marcotte, E.M. & Hurles, M.E. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 6, e1001154 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. 27

    Darnell, J.C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Huber, K.M., Gallagher, S.M., Warren, S.T. & Bear, M.F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. USA 99, 7746–7750 (2002).

    CAS  PubMed  Google Scholar 

  29. 29

    Edbauer, D. et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65, 373–384 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493, 216–220 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Ascano, M. Jr. et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492, 382–386 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Bayés, A. et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat. Neurosci. 14, 19–21 (2011).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Kennedy, M.B. The postsynaptic density at glutamatergic synapses. Trends Neurosci. 20, 264–268 (1997).

    CAS  PubMed  Google Scholar 

  34. 34

    Kennedy, M.B. Signal-processing machines at the postsynaptic density. Science 290, 750–754 (2000).

    CAS  PubMed  Google Scholar 

  35. 35

    Vogel-Ciernia, A. et al. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat. Neurosci. 16, 552–561 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Newschaffer, C.J. et al. The epidemiology of autism spectrum disorders. Annu. Rev. Public Health 28, 235–258 (2007).

    PubMed  Google Scholar 

  37. 37

    Fombonne, E. Epidemiology of pervasive developmental disorders. Pediatr. Res. 65, 591–598 (2009).

    PubMed  Google Scholar 

  38. 38

    Zhao, X. et al. A unified genetic theory for sporadic and inherited autism. Proc. Natl. Acad. Sci. USA 104, 12831–12836 (2007).

    CAS  PubMed  Google Scholar 

  39. 39

    Adolphs, R. What does the amygdala contribute to social cognition? Ann. NY Acad. Sci. 1191, 42–61 (2010).

    PubMed  Google Scholar 

  40. 40

    Willsey, A.J. et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155, 997–1007 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Samocha, K.E. et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Lord, C., Rutter, M. & Le Couteur, A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 24, 659–685 (1994).

    CAS  Google Scholar 

  43. 43

    Shepherd, G.M. Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci. 14, 278–291 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Langen, M., Durston, S., Kas, M.J., van Engeland, H. & Staal, W.G. The neurobiology of repetitive behavior: … and men. Neurosci. Biobehav. Rev. 35, 356–365 (2011).

    PubMed  Google Scholar 

  45. 45

    Burguière, E., Monteiro, P., Feng, G. & Graybiel, A.M. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science 340, 1243–1246 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. 46

    Rothwell, P.E. et al. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 158, 198–212 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Sanders, S.J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Cooper, G.M. et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15, 901–913 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Chen, L. & Vitkup, D. Predicting genes for orphan metabolic activities using phylogenetic profiles. Genome Biol. 7, R17 (2006).

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Feldman, I., Rzhetsky, A. & Vitkup, D. Network properties of genes harboring inherited disease mutations. Proc. Natl. Acad. Sci. USA 105, 4323–4328 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank M. Wigler, M. State, D. Geschwind, A. Packer, G. Fischbach and all of the members of the Vitkup laboratory for helpful discussions. This work was supported by a grant from the Simons Foundation SFARI# 308962 to D.V. and US National Centers for Biomedical Computing (MAGNet) grant U54CA121852 to Columbia University. S.R.G. was supported in part by US NIGMS training grant T32 GM082797. S.J.S. was supported by a Howard Hughes Medical Institute International Student Research Fellowship.

Author information

Affiliations

Authors

Contributions

J.C., S.R.G. and A.H.C. performed computational analysis and interpreted the results. S.J.S. contributed data, interpreted the results and contributed to the functional analysis. D.V. designed the study, supervised the project and interpreted the results. J.C., S.R.G., A.H.C. and D.V. wrote the manuscript.

Corresponding author

Correspondence to Dennis Vitkup.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Hierarchical clustering of the implicated network.

Average linkage hierarchical clustering was used to divide the implicated network into functional clusters. The inverses of the phenotypic network likelihood scores were used as the clustering metric. In this way, gene pairs strongly connected in the phenotypic network were considered to be closer in distance. Clusters were assigned the following functions using DAVID: green represents the neuronal signaling and cytoskeleton cluster, red represents the chromatin modification and regulation cluster, blue represents the channel activity cluster, and cyan represents the postsynaptic density cluster. Grey nodes represent genes that are not members of any considered cluster.

Supplementary Figure 2 Temporal gene expression profiles in the human brain across developmental stages for genes in the implicating network (red) and random gene sets selected to match network genes based on various criteria.

Human expression data were obtained from the HBT database. Random sets shown in the figure are matched by connectivity in the phenotypic network (cyan), by protein sequence length (purple), and by protein length and connectivity (green). The vertical dashed line separates prenatal and postnatal developmental stages. Error bars represent s.e.m.

Supplementary Figure 3 Non-normalized (left) and normalized (right) temporal brain expression profiles for individual genes in the functional clusters of the implicated network.

Human expression data were obtained from the HBT database. The individual panels in the figure represent profiles for: (a) postsynaptic density cluster genes, (b) chromatin modification and regulation cluster genes, (c) signaling and cytoskeleton cluster genes, and (d) channel activity cluster genes. Non-normalized profiles are shown in the left column. Every gene profile shown in the right column was normalized by dividing by the gene’s average expression value across all developmental stages. The colored lines in the right column show the average gene profile in each functional cluster. Vertical dashed lines separate prenatal and postnatal developmental stages. Error bars represent s.e.m.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 3–9 (PDF 1677 kb)

Supplementary Methods Checklist (PDF 113 kb)

Supplementary Table 1

Genetic SNV and CNV events from the Simons Simplex Collection used as input for NETBAG. (XLSX 95 kb)

Supplementary Table 2

Implicated ASD network genes and associated prioritization annotations (average log2 brain expression and truncating SNV status). (XLSX 49 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Gilman, S., Chiang, A. et al. Genotype to phenotype relationships in autism spectrum disorders. Nat Neurosci 18, 191–198 (2015). https://doi.org/10.1038/nn.3907

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing