Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathological circuit function underlying addiction and anxiety disorders

Abstract

Current models of addiction and anxiety stem from the idea that aberrant function and remodeling of neural circuits cause the pathological behaviors. According to this hypothesis, a disease-defining experience (for example, drug reward or stress) would trigger specific forms of synaptic plasticity, which in susceptible subjects would become persistent and lead to the disease. While the notion of synaptic diseases has received much attention, no candidate disorder has been sufficiently investigated to yield new, rational therapies that could be tested in the clinic. Here we review the arguments in favor of abnormal neuronal plasticity underlying addiction and anxiety disorders, with a focus on the functional diversity of neurons that make up the circuits involved. We argue that future research must strive to obtain a comprehensive description of the relevant functional anatomy. This will allow identification of molecular mechanisms that govern the induction and expression of disease-relevant plasticity in identified neurons. To establish causality, one will have to test whether normalization of function can reverse pathological behavior. With these elements in hand, it will be possible to propose blueprints for manipulations to be tested in translational studies. The challenge is daunting, but new techniques, above all optogenetics, may enable decisive advances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-range circuits involved in fear and reward perception.
Figure 2: Emerging cell type–specific anatomy of the amygdala and the VTA.
Figure 3: Schematics of proposed model.

Similar content being viewed by others

References

  1. Merikangas, K.R. et al. Comorbidity of substance use disorders with mood and anxiety disorders: results of the International Consortium in Psychiatric Epidemiology. Addict. Behav. 23, 893–907 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Grant, B.F., Stinson, F.S. & Dawson, D.A. Prevalence and co-occurrence of substance use disorders and independent mood and anxiety disorders: results from the national epidemiologic survey on alcohol and related conditions. Arch. Gen. Psychiatry 61, 807–816 (2004).

    Article  PubMed  Google Scholar 

  3. Spronk, D.B., van Wel, J.H.P., Ramaekers, J.G. & Verkes, R.J. Characterizing the cognitive effects of cocaine: a comprehensive review. Neurosci. Biobehav. Rev. 37, 1838–1859 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Di Luca, M. et al. Consensus document on European brain research. Eur. J. Neurosci. 33, 768–818 (2011).

    Article  PubMed  Google Scholar 

  5. Hyman, S.E. Addiction: a disease of learning and memory. Am. J. Psychiatry 162, 1414–1422 (2005).

    Article  PubMed  Google Scholar 

  6. Redish, A.D. Addiction as a computational process gone awry. Science 306, 1944–1947 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Childress, A.R., McLellan, A.T., Ehrman, R. & O'Brien, C.P. Classically conditioned responses in opioid and cocaine dependence: a role in relapse. NIDA Res. Monogr. 84, 25–43 (1988).

    CAS  PubMed  Google Scholar 

  8. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Krettek, J.E. & Price, J.L. A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J. Comp. Neurol. 178, 255–279 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. Maren, S. & Quirk, G.J. Neuronal signalling of fear memory. Nat. Rev. Neurosci. 5, 844–852 (2004).

    CAS  PubMed  Google Scholar 

  11. Sah, P., Faber, E.S.L., Lopez De Armentia, M. & Power, J. The amygdaloid complex: anatomy and physiology. Physiol. Rev. 83, 803–834 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Pape, H.-C. & Paré, D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol. Rev. 90, 419–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. McDonald, A.J. Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 55, 257–332 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Turner, B.H. & Herkenham, M. Thalamoamygdaloid projections in the rat: a test of the amygdala's role in sensory processing. J. Comp. Neurol. 313, 295–325 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Weisskopf, M.G., Bauer, E.P. & LeDoux, J.E. L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J. Neurosci. 19, 10512–10519 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bauer, E.P., Schafe, G.E. & LeDoux, J.E. NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci. 22, 5239–5249 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsvetkov, E., Carlezon, W.A., Benes, F.M., Kandel, E.R. & Bolshakov, V.Y. Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34, 289–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Humeau, Y. et al. Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala. Neuron 45, 119–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Rumpel, S., LeDoux, J., Zador, A. & Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science 308, 83–88 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Rosenkranz, J.A. & Grace, A.A. Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature 417, 282–287 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Sah, P., Westbrook, R.F. & Lüthi, A. Fear conditioning and long-term potentiation in the amygdala: what really is the connection? Ann. NY Acad. Sci. 1129, 88–95 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Ehrlich, I. et al. Amygdala inhibitory circuits and the control of fear memory. Neuron 62, 757–771 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Wolff, S.B.E. et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature 509, 453–458 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Letzkus, J.J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011).

    CAS  PubMed  Google Scholar 

  25. Lovett-Barron, M. et al. Dendritic inhibition in the hippocampus supports fear learning. Science 343, 857–863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Courtin, J. et al. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 505, 92–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Capogna, M. GABAergic cell type diversity in the basolateral amygdala. Curr. Opin. Neurobiol. 26, 110–116 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Pitkänen, A., Pikkarainen, M., Nurminen, N. & Ylinen, A. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann. NY Acad. Sci. 911, 369–391 (2000).

    Article  PubMed  Google Scholar 

  31. Myers, K.M. & Davis, M. Mechanisms of fear extinction. Mol. Psychiatry 12, 120–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Herry, C. et al. Neuronal circuits of fear extinction. Eur. J. Neurosci. 31, 599–612 (2010).

    Article  PubMed  Google Scholar 

  33. Quirk, G.J. & Mueller, D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33, 56–72 (2008).

    Article  PubMed  Google Scholar 

  34. Paré, D. & Duvarci, S. Amygdala microcircuits mediating fear expression and extinction. Curr. Opin. Neurobiol. 22, 717–723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tye, K.M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Felix-Ortiz, A.C. et al. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 79, 658–664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Senn, V. et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81, 428–437 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, S.-Y. et al. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496, 219–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sparta, D.R. et al. Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear. Front. Behav. Neurosci. 8, 129 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cassell, M.D., Gray, T.S. & Kiss, J.Z. Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. J. Comp. Neurol. 246, 478–499 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Huber, D., Veinante, P. & Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308, 245–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, H. et al. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci. 16, 332–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Viviani, D. et al. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 333, 104–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Omelchenko, N. & Sesack, S.R. Periaqueductal gray afferents synapse onto dopamine and GABA neurons in the rat ventral tegmental area. J. Neurosci. Res. 88, 981–991 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fields, H.L., Hjelmstad, G.O., Margolis, E.B. & Nicola, S.M. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu. Rev. Neurosci. 30, 289–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Sesack, S.R. & Grace, A.A. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35, 27–47 (2010).

    Article  PubMed  Google Scholar 

  49. Morales, M. & Root, D.H. Glutamate neurons within the midbrain dopamine regions. Neurosci. (2014). 10.1016/j.neuroscience.2014.05.032.

  50. Ungless, M.A. & Grace, A.A. Are you or aren't you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci. 35, 422–430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cohen, J.Y., Haesler, S., Vong, L., Lowell, B.B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol. 57, 87–115 (2006).

    Article  PubMed  Google Scholar 

  53. Roeper, J. Dissecting the diversity of midbraindopamine neurons. Trends Neurosci. 36, 336–342 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Lammel, S. et al. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57, 760–773 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lammel, S., Ion, D.I., Roeper, J. & Malenka, R.C. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70, 855–862 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dobi, A., Margolis, E.B., Wang, H.-L., Harvey, B.K. & Morales, M. Glutamatergic and nonglutamatergic neurons of the ventral tegmental area establish local synaptic contacts with dopaminergic and nondopaminergic neurons. J. Neurosci. 30, 218–229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tan, K.R. et al. GABA neurons of the VTA drive conditioned place aversion. Neuron 73, 1173–1183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Zessen, R., Phillips, J.L., Budygin, E.A. & Stuber, G.D. Activation of VTA GABA neurons disrupts reward consumption. Neuron 73, 1184–1194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Bockstaele, E.J. & Pickel, V.M. GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res. 682, 215–221 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Taylor, S.R. et al. GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J. Comp. Neurol. 522, 3308–3334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown, M.T.C. et al. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492, 452–456 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Goldberg, J.A. & Reynolds, J.N.J. Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience 198, 27–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Brischoux, F., Chakraborty, S., Brierley, D.I. & Ungless, M.A. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc. Natl. Acad. Sci. USA 106, 4894–4899 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Vialou, V. et al. Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: role of ΔFosB. J. Neurosci. 34, 3878–3887 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cardinal, R.N., Parkinson, J.A., Hall, J. & Everitt, B.J. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–352 (2002).

    Article  PubMed  Google Scholar 

  67. Herry, C. et al. Switching on and off fear by distinct neuronal circuits. Nature 454, 600–606 (2008).

    CAS  PubMed  Google Scholar 

  68. Paton, J.J., Belova, M.A., Morrison, S.E. & Salzman, C.D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stuber, G.D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. See, R.E., Fuchs, R.A., Ledford, C.C. & McLaughlin, J. Drug addiction, relapse, and the amygdala. Ann. NY Acad. Sci. 985, 294–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Ungless, M.A., Whistler, J.L., Malenka, R.C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Saal, D., Dong, Y., Bonci, A. & Malenka, R.C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37, 577–582 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Dong, Y. et al. Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA−/− mice. Proc. Natl. Acad. Sci. USA 101, 14282–14287 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nugent, F.S., Penick, E.C. & Kauer, J.A. Opioids block long-term potentiation of inhibitory synapses. Nature 446, 1086–1090 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Argilli, E., Sibley, D.R., Malenka, R.C., England, P.M. & Bonci, A. Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. J. Neurosci. 28, 9092–9100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yuan, T. et al. Expression of cocaine-evoked synaptic plasticity by GluN3A-containing NMDA receptors. Neuron 80, 1025–1038 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Bellone, C. & Lüscher, C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat. Neurosci. 9, 636–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Heikkinen, A.E., Möykkynen, T.P. & Korpi, E.R. Long-lasting modulation of glutamatergic transmission in VTA dopamine neurons after a single dose of benzodiazepine agonists. Neuropsychopharmacology 34, 290–298 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Tan, K.R. et al. Neural bases for addictive properties of benzodiazepines. Nature 463, 769–774 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Good, C.H. & Lupica, C.R. Afferent-specific AMPA receptor subunit composition and regulation of synaptic plasticity in midbrain dopamine neurons by abused drugs. J. Neurosci. 30, 7900–7909 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mameli, M., Bellone, C., Brown, M.T.C. & Lüscher, C. Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area. Nat. Neurosci. 14, 414–416 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Mameli, M. et al. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat. Neurosci. 12, 1036–1041 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Pascoli, V., Turiault, M. & Lüscher, C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 481, 71–75 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Britt, J.P. & Bonci, A. Optogenetic interrogations of the neural circuits underlying addiction. Curr. Opin. Neurobiol. 23, 539–545 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Conrad, K.L. et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454, 118–121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Britt, J.P. et al. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76, 790–803 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee, B.R. et al. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat. Neurosci. 16, 1644–1651 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Amano, T., Unal, C.T. & Paré, D. Synaptic correlates of fear extinction in the amygdala. Nat. Neurosci. 13, 489–494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Suvrathan, A., Hoeffer, C.A., Wong, H., Klann, E. & Chattarji, S. Characterization and reversal of synaptic defects in the amygdala in a mouse model of fragile X syndrome. Proc. Natl. Acad. Sci. USA 107, 11591–11596 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Houbaert, X. et al. Target-specific vulnerability of excitatory synapses leads to deficits in associative memory in a model of intellectual disorder. J. Neurosci. 33, 13805–13819 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Khelfaoui, M. et al. Lack of the presynaptic RhoGAP protein oligophrenin1 leads to cognitive disabilities through dysregulation of the cAMP/PKA signalling pathway. Phil. Trans. R. Soc. Lond. B 369, 20130160 (2014).

    Article  CAS  Google Scholar 

  92. Jayachandran, R. et al. Coronin 1 regulates cognition and behavior through modulation of cAMP/protein kinase A signaling. PLoS Biol. 12, e1001820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pascoli, V. et al. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509, 459–464 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Johansen, J.P. et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc. Natl. Acad. Sci. USA 107, 12692–12697 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Han, J.-H. et al. Selective Erasure of a Fear Memory. Science 323, 1492–1496 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Jennings, J.H. et al. Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Anthony, T.E. et al. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156, 522–536 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lüscher, C. Drug-evoked synaptic plasticity causing addictive behavior. J. Neurosci. 33, 17641–17646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the many colleagues who have, with discussions and suggestions on the manuscript, helped us improve this review. A.L. and C.L. are supported by grants from the Swiss National Science Foundation and the Swiss national competence center for research on synaptic basis of disease (Synapsy). C.L. is an European Research Council advanced grant holder.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas Lüthi or Christian Lüscher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lüthi, A., Lüscher, C. Pathological circuit function underlying addiction and anxiety disorders. Nat Neurosci 17, 1635–1643 (2014). https://doi.org/10.1038/nn.3849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing