Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The big data challenges of connectomics


The structure of the nervous system is extraordinarily complicated because individual neurons are interconnected to hundreds or even thousands of other cells in networks that can extend over large volumes. Mapping such networks at the level of synaptic connections, a field called connectomics, began in the 1970s with a the study of the small nervous system of a worm and has recently garnered general interest thanks to technical and computational advances that automate the collection of electron-microscopy data and offer the possibility of mapping even large mammalian brains. However, modern connectomics produces 'big data', unprecedented quantities of digital information at unprecedented rates, and will require, as with genomics at the time, breakthrough algorithmic and computational solutions. Here we describe some of the key difficulties that may arise and provide suggestions for managing them.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Segmenting brain images.
Figure 2: Transformation of segmented data into a connectivity graph.


  1. Helmstaedter, M. Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat. Methods 10, 501–507 (2013).

    Article  CAS  Google Scholar 

  2. Lichtman, J.W. & Denk, W. The big and the small: challenges of imaging the brain's circuits. Science 334, 618–623 (2011).

    Article  CAS  Google Scholar 

  3. Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  Google Scholar 

  4. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  Google Scholar 

  5. Cai, D., Cohen, K.B., Luo, T., Lichtman, J.W. & Sanes, J.R. Improved tools for the Brainbow toolbox. Nat. Methods 10, 540–547 (2013) Epub 2013 May 5.

    Article  CAS  Google Scholar 

  6. Lakadamyali, M., Babcock, H., Bates, M., Zhuang, X. & Lichtman, J. 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS ONE 7, e30826 (2012).

    Article  CAS  Google Scholar 

  7. O'Rourke, N.A., Weiler, N.C., Micheva, K.D. & Smith, S.J. Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat. Rev. Neurosci. 13, 365–379 (2012).

    Article  CAS  Google Scholar 

  8. Peddie, C.J. & Collinson, L.M. Exploring the third dimension: volume electron microscopy comes of age. Micron 61, 9–19 (2014).

    Article  Google Scholar 

  9. Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, 329 (2004).

    Article  Google Scholar 

  10. Knott, G., Marchman, H., Wall, D. & Lich, B. Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J. Neurosci. 28, 2959–2964 (2008).

    Article  CAS  Google Scholar 

  11. Bock, D.D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    Article  CAS  Google Scholar 

  12. Briggman, K.L. & Bock, D.D. Volume electron microscopy for neuronal circuit reconstruction. Curr. Opin. Neurobiol. 22, 154–161 (2012).

    Article  CAS  Google Scholar 

  13. Schüz, A. & Palm, G. Density of neurons and synapses in the cerebral cortex of the mouse. J. Comp. Neurol. 286, 442–455 (1989).

    Article  Google Scholar 

  14. Korbo, L. et al. An efficient method for estimating the total number of neurons in rat brain cortex. J. Neurosci. Methods 31, 93–100 (1990).

    Article  CAS  Google Scholar 

  15. Kaynig, V. et al. Large-scale automatic reconstruction of neuronal processes from electron microscopy images. Preprint at (2013).

  16. Kim, J.S. et al. Space-time wiring specificity supports direction selectivity in the retina. Nature 509, 331–336 (2014).

    Article  CAS  Google Scholar 

  17. Plaza, S.M., Scheffer, L.K. & Chklovskii, D.B. Toward large-scale connectome reconstructions. Curr. Opin. Neurobiol. 25, 201–210 (2014).

    Article  CAS  Google Scholar 

  18. Bunke, H. & Varga, T. Off-line roman cursive handwriting recognition: digital document processing. Adv. Pattern Recognit. 2007, 165–183 (2007).

    Google Scholar 

  19. Becker, C., Ali, K., Knott, G. & Fua, P. Learning context cues for synapse segmentation. IEEE Trans. Med. Imaging 32, 1864–1877 (2013).

    Article  Google Scholar 

  20. Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H. & Chklovskii, D.B. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7, e1001066 (2011).

    Article  CAS  Google Scholar 

  21. Eppstein, D., Goodrich, M.T. & Sun, J.Z. The skip quadtree: a simple dynamic data structure for multidimensional data. Proc. 21st Ann. Symp. Comput. Geom. 296–305 (ACM, New York, 2005).

  22. Herlihy, M. & Shavit, N. The Art of Multiprocessor Programming (Revised Edition) (Morgan Kaufmann Publishers, San Francisco, California, 2012).

  23. Amdahl, G.M. Validity of the single processor approach to achieving large-scale computing capabilities. AFIPS Conf. Proc. 30, 483–485 (1967).

    Google Scholar 

  24. Burns, R. et al. The Open Connectome Project Data Cluster: scalable analysis and vision for high-throughput neuroscience. Proc. 25th Int. Conf. Sci. Stat. Database Manag. 27, 1–11 (2012).

    Google Scholar 

  25. Lichtman, J.W. & Sanes, J.R. Ome sweet ome: what can the genome tell us about the connectome? Curr. Opin. Neurobiol. 18, 346–353 (2008).

    Article  CAS  Google Scholar 

  26. Morgan, J.L. & Lichtman, J.W. Digital tissue. in Cellular Connectomics. (eds. Helmsteder, M. & Brigmann, K.) (Academic Press, in the press).

Download references


Support is gratefully acknowledged from the US National Institute of Mental Health Silvio Conte Center (1P50MH094271 to J.W.L.), the US National Institutes of Health (NS076467 to J.W.L. and 2R44MH088088-03 to H.P.), the National Science Foundation (OIA-1125087 to H.P., CCF-1217921 to N.S., CCF-1301926 to N.S., IIS-1447786 to N.S., and IIS-1447344 to H.P. and J.W.L.), a Department of Energy Advanced Scientific Computing Research grant (ER26116/DE-SC0008923 to N.S.), Nvidia (H.P.), Oracle (N.S.) and Intel (N.S.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jeff W Lichtman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lichtman, J., Pfister, H. & Shavit, N. The big data challenges of connectomics. Nat Neurosci 17, 1448–1454 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing