Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Big behavioral data: psychology, ethology and the foundations of neuroscience

Abstract

Behavior is a unifying organismal process where genes, neural function, anatomy and environment converge and interrelate. Here we review the current state and discuss the future effect of accelerating advances in technology for behavioral studies, focusing on rodents as an example. We frame our perspective in three dimensions: the degree of experimental constraint, dimensionality of data and level of description. We argue that 'big behavioral data' presents challenges proportionate to its promise and describe how these challenges might be met through opportunities afforded by the two rival conceptual legacies of twentieth century behavioral science, ethology and psychology. We conclude that, although 'more is not necessarily better', copious, quantitative and open behavioral data has the potential to transform and unify these two disciplines and to solidify the foundations of others, including neuroscience, but only if the development of new theoretical frameworks and improved experimental designs matches the technological progress.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Conceptual representation of three main axes in the behavioral science space and their relationship to the legacy, promise and challenges of big behavioral data.

References

  1. Darwin, C. The Expression of the Emotions in Man and Animals (Oxford University Press, 1998).

  2. Lorenz, K. On the formation of the concept of instinct. Nat. Sci. 25, 289–300 (1937).

    Article  Google Scholar 

  3. Tinbergen, N. The Study of Instinct (Clarendon Press, Oxford, 1951).

  4. Von Frisch, K. The Dancing Bees: An Account of the Life and Senses of the Honey Bee (Harcourt, Brace, 1955).

  5. Pavlov, I.P. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex (Oxford University Press, 1927).

  6. Konorski, J. Conditioned Reflexes And Neuron Organization (Cambridge University Press, 1948).

  7. Hull, C. Principles of Behavior: an Introduction to Behavior Theory (Appleton-Century-Crofts, 1943).

  8. Thorndike, E.L. Animal Intelligence: Experimental Studies (Macmillan, 1911).

  9. Skinner, B.F. The Behavior of Organisms: An Experimental Analysis (Appleton-Century, Oxford, 1938).

  10. Tolman, E.C. Cognitive maps in rats and men. Psychol. Rev. 55, 189 (1948).

    Article  CAS  PubMed  Google Scholar 

  11. Colwill, R.M. & Rescorla, R.A. Postconditioning devaluation of a reinforcer affects instrumental responding. J. Exp. Psychol. Anim. Behav. Process. 11, 120 (1985).

    Article  Google Scholar 

  12. Dickinson, A., Nicholas, D.J. & Adams, C.D. The effect of the instrumental training contingency on susceptibility to reinforcer devaluation. Q. J. Exp. Psychol. 35, 35–51 (1983).

    Article  Google Scholar 

  13. Muybridge, E. Animal Locomotion (Da Capo Press, New York, 1969).

  14. Harrington, M.E., Daniel, R.W. & Kyberd, P.J. A measurement system for the recognition of arm gestures using accelerometers. Proc. Inst. Mech. Eng. H 209, 129–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Venkatraman, S., Jin, X., Costa, R.M. & Carmena, J.M. Investigating neural correlates of behavior in freely behaving rodents using inertial sensors. J. Neurophysiol. 104, 569 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kwon, Y., Kang, K., Bae, C., Chung, H.-J. & Kim, J.H. Lifelog agent for human activity pattern analysis on Health Avatar platform. Healthc. Inform. Res. 20, 69–75 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kepecs, A., Uchida, N. & Mainen, Z.F. Rapid and precise control of sniffing during olfactory discrimination in rats. J. Neurophysiol. 98, 205–213 (2007).

    Article  PubMed  Google Scholar 

  18. Koralek, A.C., Jin, X., Long, J.D. II, Costa, R.M. & Carmena, J.M. Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 483, 331–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schaefer, A.T. & Claridge-Chang, A. The surveillance state of behavioral automation. Curr. Opin. Neurobiol. 22, 170–176 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brunton, B.W., Botvinick, M.M. & Brody, C.D. Rats and humans can optimally accumulate evidence for decision-making. Science 340, 95–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Winter, Y. & Schaefers, A.T. A sorting system with automated gates permits individual operant experiments with mice from a social home cage. J. Neurosci. Methods 196, 276–280 (2011).

    Article  PubMed  Google Scholar 

  22. Vannoni, E. et al. Spontaneous behavior in the social homecage discriminates strains, lesions and mutations in mice. J. Neurosci. Methods 234, 26–37 (2014).

    Article  PubMed  Google Scholar 

  23. Dell, A. et al. Automated image-based tracking and its application in ecology. Trends Ecol. Evol. 29, 417–428 (2014).

    Article  PubMed  Google Scholar 

  24. Fechner, G.T. Elemente der Psychophysik (Breitkopf and Hartel, 1860) [transl].

  25. Carandini, M. & Churchland, A.K. Probing perceptual decisions in rodents. Nat. Neurosci. 16, 824–831 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kepecs, A., Uchida, N., Zariwala, H.A. & Mainen, Z.F. Neural correlates, computation and behavioral impact of decision confidence. Nature 455, 227–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Sutton, R.S. & Barto, A.G. Reinforcement learning: an introduction. IEEE Trans. Neural Netw. 9, 1054 (1998).

    Article  Google Scholar 

  28. Tai, L.-H., Lee, A.M., Benavidez, N., Bonci, A. & Wilbrecht, L. Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat. Neurosci. 15, 1281–1289 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scott, B.B., Brody, C.D. & Tank, D.W. Cellular resolution functional imaging in behaving rats using voluntary head restraint. Neuron 80, 371–384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Busse, L. et al. The detection of visual contrast in the behaving mouse. J. Neurosci. 31, 11351–11361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gold, J.I. & Shadlen, M.N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16 (2001).

    Article  PubMed  Google Scholar 

  32. Selen, L.P., Shadlen, M.N. & Wolpert, D.M. Deliberation in the motor system: reflex gains track evolving evidence leading to a decision. J. Neurosci. 32, 2276–2286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson, A. & Redish, A.D. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27, 12176–12189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gouvêa, T.S., Monteiro, T., Soares, S., Atallah, B.V. & Paton, J.J. Ongoing behavior predicts perceptual report of interval duration. Front. Neurorobot. 8, 10 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Luce, R.D. Response Times: Their Role in Inferring Elementary Mental Organization (Oxford University Press, 1986).

  36. Kawagoe, R., Takikawa, Y. & Hikosaka, O. Expectation of reward modulates cognitive signals in the basal ganglia. Nat. Neurosci. 1, 411–416 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Harvey, C.D., Coen, P. & Tank, D.W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Kepecs, A. & Mainen, Z.F. A computational framework for the study of confidence in humans and animals. Philos. Trans. R. Soc. B Biol. Sci. 367, 1322–1337 (2012).

    Article  Google Scholar 

  40. Schall, J.D. On building a bridge between brain and behavior. Annu. Rev. Psychol. 55, 23–50 (2004).

    Article  PubMed  Google Scholar 

  41. Heider, F. & Simmel, M. An experimental study of apparent behavior. Am. J. Psychol. 57, 243–259 (1944).

    Article  Google Scholar 

  42. Branson, K., Robie, A.A., Bender, J., Perona, P. & Dickinson, M.H. High-throughput ethomics in large groups of Drosophila. Nat. Methods 6, 451–457 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tenenbaum, J.B., De Silva, V. & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, H.-Y. et al. Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 31, 65 (2012).

    Article  Google Scholar 

  45. Catania, K.C. & Remple, F.E. Asymptotic prey profitability drives star-nosed moles to the foraging speed limit. Nature 433, 519–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Biro, P.A. Do rapid assays predict repeatability in labile (behavioral) traits? Anim. Behav. 83, 1295–1300 (2012).

    Article  Google Scholar 

  47. Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957).

    Article  Google Scholar 

  48. Friston, K.J., Daunizeau, J., Kilner, J. & Kiebel, S.J. Action and behavior: a free-energy formulation. Biol. Cybern. 102, 227–260 (2010).

    Article  PubMed  Google Scholar 

  49. Bialek, W. et al. Social interactions dominate speed control in poising natural flocks near criticality. Proc. Natl. Acad. Sci. USA 111, 7212–7217 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jordan, D., Kuehn, S., Katifori, E. & Leibler, S. Behavioral diversity in microbes and low-dimensional phenotypic spaces. Proc. Natl. Acad. Sci. USA 110, 14018–14023 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stephens, G.J., Johnson-Kerner, B., Bialek, W. & Ryu, W.S. Dimensionality and dynamics in the behavior of C. elegans. PLoS Comput. Biol. 4, e1000028 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jin, D.Z. & Kozhevnikov, A.A. A compact statistical model of the song syntax in Bengalese finch. PLoS Comput. Biol. 7, e1001108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brown, A.E., Yemini, E.I., Grundy, L.J., Jucikas, T. & Schafer, W.R. A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion. Proc. Natl. Acad. Sci. USA 110, 791–796 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Berman, G.J., Choi, D.M., Bialek, W. & Shaevitz, J.W. Mapping the stereotyped behavior of freely moving fruit flies. J. R. Soc. Interface 11, 20140672 (2014).

  55. Shoval, O. et al. Evolutionary trade-offs, Pareto optimality and the geometry of phenotype space. Science 336, 1157–1160 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Von Uexküll, J. A Foray into the Worlds of Animals and Humans: With a Theory of Meaning (Univ. of Minnesota Press, 2010).

  57. Gomez-Marin, A., Stephens, G.J. & Louis, M. Active sampling and decision making in Drosophila chemotaxis. Nat. Commun. 2, 441 (2011).

    Article  PubMed  CAS  Google Scholar 

  58. Kane, S.A. & Zamani, M. Falcons pursue prey using visual motion cues: new perspectives from animal-borne cameras. J. Exp. Biol. 217, 225–234 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Censi, A., Straw, A.D., Sayaman, R.W., Murray, R.M. & Dickinson, M.H. Discriminating external and internal causes for heading changes in freely flying Drosophila. PLOS Comput. Biol. 9, e1002891 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Portugues, R., Feierstein, C.E., Engert, F. & Orger, M.B. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 81, 1328–1343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vogelstein, J.T. et al. Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science 344, 386–392 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Balleine, B.W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Kain, J.S., Stokes, C. & de Bivort, B.L. Phototactic personality in fruit flies and its suppression by serotonin and white. Proc. Natl. Acad. Sci. USA 109, 19834–19839 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stamps, J. & Groothuis, T.G. The development of animal personality: relevance, concepts and perspectives. Biol. Rev. Camb. Philos. Soc. 85, 301–325 (2010).

    Article  PubMed  Google Scholar 

  65. Benjamini, Y. et al. Ten ways to improve the quality of descriptions of whole-animal movement. Neurosci. Biobehav. Rev. 34, 1351–1365 (2010).

    Article  PubMed  Google Scholar 

  66. Brembs, B. The importance of being active. J. Neurogenet. 23, 120–126 (2009).

    Article  PubMed  Google Scholar 

  67. Maye, A., Hsieh, C., Sugihara, G. & Brembs, B. Order in spontaneous behavior. PLoS ONE 2, e443 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Proekt, A., Banavar, J.R., Maritan, A. & Pfaff, D.W. Scale invariance in the dynamics of spontaneous behavior. Proc. Natl. Acad. Sci. USA 109, 10564–10569 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eckmann, J.-P., Kamphorst, S.O. & Ruelle, D. Recurrence plots of dynamical systems. EPL Europhys. Lett. 4, 973 (1987).

    Article  Google Scholar 

  70. Costa, R.M. A selectionist account of de novo action learning. Curr. Opin. Neurobiol. 21, 579–586 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Briegel, H.J. On creative machines and the physical origins of freedom. Sci. Rep. 2, 522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lorenz, K.Z. The evolution of behavior. Sci. Am. 199, 67–74 (1958).

    Article  CAS  PubMed  Google Scholar 

  73. Morris, S.C. Life's Solution: Inevitable Humans in a Lonely Universe (Cambridge University Press, 2003).

  74. Golani, I. A mobility gradient in the organization of vertebrate movement: the perception of movement through symbolic language. Behav. Brain Sci. 15, 249–266 (1992).

    Article  Google Scholar 

  75. Dominici, N. et al. Locomotor primitives in newborn babies and their development. Science 334, 997–999 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary F Mainen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomez-Marin, A., Paton, J., Kampff, A. et al. Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat Neurosci 17, 1455–1462 (2014). https://doi.org/10.1038/nn.3812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing