Abstract
Behavior is a unifying organismal process where genes, neural function, anatomy and environment converge and interrelate. Here we review the current state and discuss the future effect of accelerating advances in technology for behavioral studies, focusing on rodents as an example. We frame our perspective in three dimensions: the degree of experimental constraint, dimensionality of data and level of description. We argue that 'big behavioral data' presents challenges proportionate to its promise and describe how these challenges might be met through opportunities afforded by the two rival conceptual legacies of twentieth century behavioral science, ethology and psychology. We conclude that, although 'more is not necessarily better', copious, quantitative and open behavioral data has the potential to transform and unify these two disciplines and to solidify the foundations of others, including neuroscience, but only if the development of new theoretical frameworks and improved experimental designs matches the technological progress.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Darwin, C. The Expression of the Emotions in Man and Animals (Oxford University Press, 1998).
Lorenz, K. On the formation of the concept of instinct. Nat. Sci. 25, 289–300 (1937).
Tinbergen, N. The Study of Instinct (Clarendon Press, Oxford, 1951).
Von Frisch, K. The Dancing Bees: An Account of the Life and Senses of the Honey Bee (Harcourt, Brace, 1955).
Pavlov, I.P. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex (Oxford University Press, 1927).
Konorski, J. Conditioned Reflexes And Neuron Organization (Cambridge University Press, 1948).
Hull, C. Principles of Behavior: an Introduction to Behavior Theory (Appleton-Century-Crofts, 1943).
Thorndike, E.L. Animal Intelligence: Experimental Studies (Macmillan, 1911).
Skinner, B.F. The Behavior of Organisms: An Experimental Analysis (Appleton-Century, Oxford, 1938).
Tolman, E.C. Cognitive maps in rats and men. Psychol. Rev. 55, 189 (1948).
Colwill, R.M. & Rescorla, R.A. Postconditioning devaluation of a reinforcer affects instrumental responding. J. Exp. Psychol. Anim. Behav. Process. 11, 120 (1985).
Dickinson, A., Nicholas, D.J. & Adams, C.D. The effect of the instrumental training contingency on susceptibility to reinforcer devaluation. Q. J. Exp. Psychol. 35, 35–51 (1983).
Muybridge, E. Animal Locomotion (Da Capo Press, New York, 1969).
Harrington, M.E., Daniel, R.W. & Kyberd, P.J. A measurement system for the recognition of arm gestures using accelerometers. Proc. Inst. Mech. Eng. H 209, 129–134 (1995).
Venkatraman, S., Jin, X., Costa, R.M. & Carmena, J.M. Investigating neural correlates of behavior in freely behaving rodents using inertial sensors. J. Neurophysiol. 104, 569 (2010).
Kwon, Y., Kang, K., Bae, C., Chung, H.-J. & Kim, J.H. Lifelog agent for human activity pattern analysis on Health Avatar platform. Healthc. Inform. Res. 20, 69–75 (2014).
Kepecs, A., Uchida, N. & Mainen, Z.F. Rapid and precise control of sniffing during olfactory discrimination in rats. J. Neurophysiol. 98, 205–213 (2007).
Koralek, A.C., Jin, X., Long, J.D. II, Costa, R.M. & Carmena, J.M. Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 483, 331–335 (2012).
Schaefer, A.T. & Claridge-Chang, A. The surveillance state of behavioral automation. Curr. Opin. Neurobiol. 22, 170–176 (2012).
Brunton, B.W., Botvinick, M.M. & Brody, C.D. Rats and humans can optimally accumulate evidence for decision-making. Science 340, 95–98 (2013).
Winter, Y. & Schaefers, A.T. A sorting system with automated gates permits individual operant experiments with mice from a social home cage. J. Neurosci. Methods 196, 276–280 (2011).
Vannoni, E. et al. Spontaneous behavior in the social homecage discriminates strains, lesions and mutations in mice. J. Neurosci. Methods 234, 26–37 (2014).
Dell, A. et al. Automated image-based tracking and its application in ecology. Trends Ecol. Evol. 29, 417–428 (2014).
Fechner, G.T. Elemente der Psychophysik (Breitkopf and Hartel, 1860) [transl].
Carandini, M. & Churchland, A.K. Probing perceptual decisions in rodents. Nat. Neurosci. 16, 824–831 (2013).
Kepecs, A., Uchida, N., Zariwala, H.A. & Mainen, Z.F. Neural correlates, computation and behavioral impact of decision confidence. Nature 455, 227–231 (2008).
Sutton, R.S. & Barto, A.G. Reinforcement learning: an introduction. IEEE Trans. Neural Netw. 9, 1054 (1998).
Tai, L.-H., Lee, A.M., Benavidez, N., Bonci, A. & Wilbrecht, L. Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat. Neurosci. 15, 1281–1289 (2012).
Scott, B.B., Brody, C.D. & Tank, D.W. Cellular resolution functional imaging in behaving rats using voluntary head restraint. Neuron 80, 371–384 (2013).
Busse, L. et al. The detection of visual contrast in the behaving mouse. J. Neurosci. 31, 11351–11361 (2011).
Gold, J.I. & Shadlen, M.N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16 (2001).
Selen, L.P., Shadlen, M.N. & Wolpert, D.M. Deliberation in the motor system: reflex gains track evolving evidence leading to a decision. J. Neurosci. 32, 2276–2286 (2012).
Johnson, A. & Redish, A.D. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27, 12176–12189 (2007).
Gouvêa, T.S., Monteiro, T., Soares, S., Atallah, B.V. & Paton, J.J. Ongoing behavior predicts perceptual report of interval duration. Front. Neurorobot. 8, 10 (2014).
Luce, R.D. Response Times: Their Role in Inferring Elementary Mental Organization (Oxford University Press, 1986).
Kawagoe, R., Takikawa, Y. & Hikosaka, O. Expectation of reward modulates cognitive signals in the basal ganglia. Nat. Neurosci. 1, 411–416 (1998).
Harvey, C.D., Coen, P. & Tank, D.W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).
Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004).
Kepecs, A. & Mainen, Z.F. A computational framework for the study of confidence in humans and animals. Philos. Trans. R. Soc. B Biol. Sci. 367, 1322–1337 (2012).
Schall, J.D. On building a bridge between brain and behavior. Annu. Rev. Psychol. 55, 23–50 (2004).
Heider, F. & Simmel, M. An experimental study of apparent behavior. Am. J. Psychol. 57, 243–259 (1944).
Branson, K., Robie, A.A., Bender, J., Perona, P. & Dickinson, M.H. High-throughput ethomics in large groups of Drosophila. Nat. Methods 6, 451–457 (2009).
Tenenbaum, J.B., De Silva, V. & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000).
Wu, H.-Y. et al. Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 31, 65 (2012).
Catania, K.C. & Remple, F.E. Asymptotic prey profitability drives star-nosed moles to the foraging speed limit. Nature 433, 519–522 (2005).
Biro, P.A. Do rapid assays predict repeatability in labile (behavioral) traits? Anim. Behav. 83, 1295–1300 (2012).
Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957).
Friston, K.J., Daunizeau, J., Kilner, J. & Kiebel, S.J. Action and behavior: a free-energy formulation. Biol. Cybern. 102, 227–260 (2010).
Bialek, W. et al. Social interactions dominate speed control in poising natural flocks near criticality. Proc. Natl. Acad. Sci. USA 111, 7212–7217 (2014).
Jordan, D., Kuehn, S., Katifori, E. & Leibler, S. Behavioral diversity in microbes and low-dimensional phenotypic spaces. Proc. Natl. Acad. Sci. USA 110, 14018–14023 (2013).
Stephens, G.J., Johnson-Kerner, B., Bialek, W. & Ryu, W.S. Dimensionality and dynamics in the behavior of C. elegans. PLoS Comput. Biol. 4, e1000028 (2008).
Jin, D.Z. & Kozhevnikov, A.A. A compact statistical model of the song syntax in Bengalese finch. PLoS Comput. Biol. 7, e1001108 (2011).
Brown, A.E., Yemini, E.I., Grundy, L.J., Jucikas, T. & Schafer, W.R. A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion. Proc. Natl. Acad. Sci. USA 110, 791–796 (2013).
Berman, G.J., Choi, D.M., Bialek, W. & Shaevitz, J.W. Mapping the stereotyped behavior of freely moving fruit flies. J. R. Soc. Interface 11, 20140672 (2014).
Shoval, O. et al. Evolutionary trade-offs, Pareto optimality and the geometry of phenotype space. Science 336, 1157–1160 (2012).
Von Uexküll, J. A Foray into the Worlds of Animals and Humans: With a Theory of Meaning (Univ. of Minnesota Press, 2010).
Gomez-Marin, A., Stephens, G.J. & Louis, M. Active sampling and decision making in Drosophila chemotaxis. Nat. Commun. 2, 441 (2011).
Kane, S.A. & Zamani, M. Falcons pursue prey using visual motion cues: new perspectives from animal-borne cameras. J. Exp. Biol. 217, 225–234 (2014).
Censi, A., Straw, A.D., Sayaman, R.W., Murray, R.M. & Dickinson, M.H. Discriminating external and internal causes for heading changes in freely flying Drosophila. PLOS Comput. Biol. 9, e1002891 (2013).
Portugues, R., Feierstein, C.E., Engert, F. & Orger, M.B. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 81, 1328–1343 (2014).
Vogelstein, J.T. et al. Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science 344, 386–392 (2014).
Balleine, B.W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419 (1998).
Kain, J.S., Stokes, C. & de Bivort, B.L. Phototactic personality in fruit flies and its suppression by serotonin and white. Proc. Natl. Acad. Sci. USA 109, 19834–19839 (2012).
Stamps, J. & Groothuis, T.G. The development of animal personality: relevance, concepts and perspectives. Biol. Rev. Camb. Philos. Soc. 85, 301–325 (2010).
Benjamini, Y. et al. Ten ways to improve the quality of descriptions of whole-animal movement. Neurosci. Biobehav. Rev. 34, 1351–1365 (2010).
Brembs, B. The importance of being active. J. Neurogenet. 23, 120–126 (2009).
Maye, A., Hsieh, C., Sugihara, G. & Brembs, B. Order in spontaneous behavior. PLoS ONE 2, e443 (2007).
Proekt, A., Banavar, J.R., Maritan, A. & Pfaff, D.W. Scale invariance in the dynamics of spontaneous behavior. Proc. Natl. Acad. Sci. USA 109, 10564–10569 (2012).
Eckmann, J.-P., Kamphorst, S.O. & Ruelle, D. Recurrence plots of dynamical systems. EPL Europhys. Lett. 4, 973 (1987).
Costa, R.M. A selectionist account of de novo action learning. Curr. Opin. Neurobiol. 21, 579–586 (2011).
Briegel, H.J. On creative machines and the physical origins of freedom. Sci. Rep. 2, 522 (2012).
Lorenz, K.Z. The evolution of behavior. Sci. Am. 199, 67–74 (1958).
Morris, S.C. Life's Solution: Inevitable Humans in a Lonely Universe (Cambridge University Press, 2003).
Golani, I. A mobility gradient in the organization of vertebrate movement: the perception of movement through symbolic language. Behav. Brain Sci. 15, 249–266 (1992).
Dominici, N. et al. Locomotor primitives in newborn babies and their development. Science 334, 997–999 (2011).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Gomez-Marin, A., Paton, J., Kampff, A. et al. Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat Neurosci 17, 1455–1462 (2014). https://doi.org/10.1038/nn.3812
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn.3812
This article is cited by
-
A paradigm shift in translational psychiatry through rodent neuroethology
Molecular Psychiatry (2023)
-
Drawing as a versatile cognitive tool
Nature Reviews Psychology (2023)
-
Deep phenotyping reveals movement phenotypes in mouse neurodevelopmental models
Molecular Autism (2022)
-
Identifying behavioral structure from deep variational embeddings of animal motion
Communications Biology (2022)
-
Predicting fertility from sperm motility landscapes
Communications Biology (2022)