Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci

Abstract

We used a collection of 708 prospectively collected autopsied brains to assess the methylation state of the brain's DNA in relation to Alzheimer's disease (AD). We found that the level of methylation at 71 of the 415,848 interrogated CpGs was significantly associated with the burden of AD pathology, including CpGs in the ABCA7 and BIN1 regions, which harbor known AD susceptibility variants. We validated 11 of the differentially methylated regions in an independent set of 117 subjects. Furthermore, we functionally validated these CpG associations and identified the nearby genes whose RNA expression was altered in AD: ANK1, CDH23, DIP2A, RHBDF2, RPL13, SERPINF1 and SERPINF2. Our analyses suggest that these DNA methylation changes may have a role in the onset of AD given that we observed them in presymptomatic subjects and that six of the validated genes connect to a known AD susceptibility gene network.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Summary of the genome-wide brain DNA methylation scan for NP burden and its validation using independent DNA methylation data and brain RNA data.
Figure 2: Extent of differences in methylation levels at associated CpGs and regional distribution of associations.
Figure 3: Distribution of CpGs associated (P < 1.2 × 10−7) with NP among 11 chromatin states found in mid-frontal cortex.
Figure 4: Genes identified in our DNA methylation screen connect to a network of known AD susceptibility genes.

References

  1. Wang, S.C., Oelze, B. & Schumacher, A. Age-specific epigenetic drift in late-onset Alzheimer's disease. PLoS ONE 3, e2698 (2008).

    PubMed  PubMed Central  Google Scholar 

  2. Feinberg, A.P. et al. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci. Transl. Med. 2, 49ra67 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. Liu, Y. et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol. 31, 142–147 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chuang, D.M., Leng, Y., Marinova, Z., Kim, H.J. & Chiu, C.T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 32, 591–601 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gräff, J. et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483, 222–226 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. Chouliaras, L. et al. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients. Neurobiol. Aging 34, 2091–2099 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bakulski, K.M. et al. Genome-wide DNA methylation differences between late-onset Alzheimer's disease and cognitively normal controls in human frontal cortex. J. Alzheimers Dis. 29, 571–588 (2012).

    CAS  PubMed  Google Scholar 

  8. Numata, S. et al. DNA methylation signatures in development and aging of the human prefrontal cortex. Am. J. Hum. Genet. 90, 260–272 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Akbarian, S., Beeri, M.S. & Haroutunian, V. Epigenetic determinants of healthy and diseased brain aging and cognition. JAMA Neurol. 70, 711–718 (2013).

    PubMed  Google Scholar 

  10. Hernandez, D.G. et al. Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum. Mol. Genet. 20, 1164–1172 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bell, J.T. et al. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet. 8, e1002629 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Horvath, S. et al. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 13, R97 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Raj, T. et al. Alzheimer disease susceptibility loci: evidence for a protein network under natural selection. Am. J. Hum. Genet. 90, 720–726 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bennett, D.A. et al. Selected findings from the Religious Orders Study and Rush Memory and Aging Project. J. Alzheimers Dis. 33, S397–S403 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. Bock, C. et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat. Biotechnol. 28, 1106–1114 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Negash, S., Bennett, D.A., Wilson, R.S., Schneider, J.A. & Arnold, S.E. Cognition and neuropathology in aging: multidimensional perspectives from the Rush Religious Orders Study and Rush Memory And Aging Project. Curr. Alzheimer Res. 8, 336–340 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bennett, D.A., Wilson, R.S., Boyle, P.A., Buchman, A.S. & Schneider, J.A. Relation of neuropathology to cognition in persons without cognitive impairment. Ann. Neurol. 72, 599–609 (2012).

    PubMed  PubMed Central  Google Scholar 

  18. Chibnik, L.B. et al. CR1 is associated with amyloid plaque burden and age-related cognitive decline. Ann. Neurol. 69, 560–569 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Naj, A.C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat. Genet. 43, 436–441 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Seshadri, S. et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. J. Am. Med. Assoc. 303, 1832–1840 (2010).

    CAS  Google Scholar 

  21. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429–435 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lambert, J.C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat. Genet. 41, 1094–1099 (2009).

    CAS  PubMed  Google Scholar 

  23. Shulman, J.M. et al. Genetic susceptibility for Alzheimer disease neuritic plaque pathology. JAMA Neurol. 70, 1150–1157 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Lunnon, K. et al. Cross-tissue methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease neuropathology. Nat. Neurosci. 17, XXX–YYY (2014).

    Google Scholar 

  25. Schneider, J.A., Arvanitakis, Z., Leurgans, S.E. & Bennett, D.A. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann. Neurol. 66, 200–208 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. Sperling, R.A. et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 280–292 (2011).

    PubMed  PubMed Central  Google Scholar 

  27. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 28, 817–825 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chapuis, J. et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol. Psychiatry 18, 1225–1234 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lambert, J.C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45, 1452–1458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tanaka, M. et al. DIP2 disco-interacting protein 2 homolog A (Drosophila) is a candidate receptor for follistatin-related protein/follistatin-like 1–analysis of their binding with TGF-beta superfamily proteins. FEBS J. 277, 4278–4289 (2010).

    CAS  PubMed  Google Scholar 

  31. Cruchaga, C. et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature 505, 550–554 (2014).

    CAS  PubMed  Google Scholar 

  32. Roet, K.C. et al. A multilevel screening strategy defines a molecular fingerprint of proregenerative olfactory ensheathing cells and identifies SCARB2, a protein that improves regenerative sprouting of injured sensory spinal axons. J. Neurosci. 33, 11116–11135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Adrain, C., Zettl, M., Christova, Y., Taylor, N. & Freeman, M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 335, 225–228 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Siggs, O.M. et al. iRhom2 is required for the secretion of mouse TNFalpha. Blood 119, 5769–5771 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McIlwain, D.R. et al. iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 335, 229–232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Maretzky, T. et al. iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding. Proc. Natl. Acad. Sci. USA 110, 11433–11438 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cooper-Knock, J. et al. Gene expression profiling in human neurodegenerative disease. Nat. Rev. Neurol. 8, 518–530 (2012).

    CAS  PubMed  Google Scholar 

  38. Simpson, J.E. et al. Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer's pathology and APOE genotype. Neurobiol. Aging 32, 1795–1807 (2011).

    CAS  PubMed  Google Scholar 

  39. Linnertz, C. et al. Genetic regulation of alpha-synuclein mRNA expression in various human brain tissues. PLoS ONE 4, e7480 (2009).

    PubMed  PubMed Central  Google Scholar 

  40. Renner, N.A. et al. Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes. J. Cell. Physiol. 228, 1284–1294 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kraft, A.W. et al. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J. 27, 187–198 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bennett, D.A. et al. Overview and findings from the rush Memory and Aging Project. Curr. Alzheimer Res. 9, 646–663 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bennett, D.A., Schneider, J.A., Arvanitakis, Z. & Wilson, R.S. Overview and findings from the religious orders study. Curr. Alzheimer Res. 9, 628–645 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Allen, M. et al. Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology 79, 221–228 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zou, F. et al. Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants. PLoS Genet. 8, e1002707 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Du, P., Kibbe, W.A. & Lin, S.M. lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008).

    CAS  PubMed  Google Scholar 

  47. Lin, S.M., Du, P., Huber, W. & Kibbe, W.A. Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res. 36, e11 (2008).

    PubMed  PubMed Central  Google Scholar 

  48. Bennett, D.A. et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66, 1837–1844 (2006).

    CAS  PubMed  Google Scholar 

  49. Chen, Y.A. et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8, 203–209 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnson, W.E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    PubMed  Google Scholar 

  51. Du, P. et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 11, 587 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Guintivano, J., Aryee, M.J. & Kaminsky, Z.A. A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics 8, 290–302 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bock, C. Analysing and interpreting DNA methylation data. Nat. Rev. Genet. 13, 705–719 (2012).

    CAS  PubMed  Google Scholar 

  54. Gifford, C.A. et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153, 1149–1163 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10, 232 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. Ziller, M.J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu, J. et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152, 642–654 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rossin, E.J. et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 7, e1001273 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lage, K. et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat. Biotechnol. 25, 309–316 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Institute for Health (NIHR) Biomedical Research Unit in Dementia in the South London and Maudsley NHS Foundation Trust (SLaM), Brains for Dementia Research (Alzheimer Brain Bank UK) and the donors and families who made this research possible. We also would like to thank the participants of the ROS and MAP studies for their participation in these studies. Support for this research was provided by grants from the US National Institutes of Health (R01 AG036042, R01AG036836, R01 AG17917,R01AG15819, R01 AG032990, R01 AG18023, RC2 AG036547, P30 AG10161, P50 AG016574, U01 ES017155, KL2 RR024151, K25 AG041906-01). Support was also provided by the Siragusa Foundation to N.E.-T., and the Robert and Clarice Smith and Abigail Van Buren Alzheimer's Disease Research Program to N.E.-T., S.G.Y. and F.Z. This work was funded by US National Institutes of Health grant AG036039 to J.M. and an Equipment Grant from Alzheimer's Research UK.

Author information

Authors and Affiliations

Authors

Contributions

C.M., A.T., W.B., S.G., C.B.E., B.E.B., A.M. and J.A.S. collected, prepared and generated data from the samples. G.S., L.B.C., J.E., B.T.K., M.K., T.R., J.R. and L.Y. performed analyses on the resulting data. K.L., L.C.S. and J.M. generated and analyzed the replication data. N.E.-T., J.B., H.S.C., C.Y., F.Z. and S.G.Y. provided and analyzed RNA data from AD and non-AD brains. P.L.D. and D.A.B. designed the study. P.L.D., D.A.B. and L.B.C. wrote the manuscript. All of the authors critically reviewed the manuscript.

Corresponding authors

Correspondence to Philip L De Jager or David A Bennett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–7 and Supplementary Figures 1–6 (PDF 6819 kb)

Supplementary Methods Checklist (PDF 162 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Jager, P., Srivastava, G., Lunnon, K. et al. Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17, 1156–1163 (2014). https://doi.org/10.1038/nn.3786

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3786

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing