Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dimensionality reduction for large-scale neural recordings

Abstract

Most sensory, cognitive and motor functions depend on the interactions of many neurons. In recent years, there has been rapid development and increasing use of technologies for recording from large numbers of neurons, either sequentially or simultaneously. A key question is what scientific insight can be gained by studying a population of recorded neurons beyond studying each neuron individually. Here, we examine three important motivations for population studies: single-trial hypotheses requiring statistical power, hypotheses of population response structure and exploratory analyses of large data sets. Many recent studies have adopted dimensionality reduction to analyze these populations and to find features that are not apparent at the level of individual neurons. We describe the dimensionality reduction methods commonly applied to population activity and offer practical advice about selecting methods and interpreting their outputs. This review is intended for experimental and computational researchers who seek to understand the role dimensionality reduction has had and can have in systems neuroscience, and who seek to apply these methods to their own data.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Motivation for population analyses and dimensionality reduction.
Figure 2: Conceptual illustration of linear dimensionality reduction for three neurons (D = 3) and two latent variables (K = 2).
Figure 3: Examples of scientific studies using dimensionality reduction.
Figure 4: Conceptual illustration of PCA, LDA and demixed dimensionality reduction for two neurons (D = 2).

References

  1. Kipke, D.R. et al. Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28, 11830–11838 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Kerr, J.N. & Denk, W. Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9, 195–205 (2008).

    CAS  PubMed  Article  Google Scholar 

  3. Ahrens, M.B. et al. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    CAS  PubMed  Article  Google Scholar 

  4. Mante, V. et al. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Kaufman, M.T. et al. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661–673 (2005).

    CAS  Article  PubMed  Google Scholar 

  7. Harvey, D.C. et al. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Stokes, M.G. et al. Dynamic coding for cognitive control in prefrontal cortex. Neuron 78, 364–375 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Briggman, K.L., Abarbanel, H.D.I. & Kristan, W.B. Jr. Optical imaging of neuronal populations during decision-making. Science 307, 896–901 (2005).

    CAS  Article  PubMed  Google Scholar 

  10. Churchland, M.M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Churchland, M.M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Yu, B.M. et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102, 614–635 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  13. Broome, B.M. et al. Encoding and decoding of overlapping odor sequences. Neuron 51, 467–482 (2006).

    CAS  PubMed  Article  Google Scholar 

  14. Saha, D. et al. A spatiotemporal coding mechanism for background-invariant odor recognition. Nat. Neurosci. 16, 1830–1839 (2013).

    CAS  PubMed  Article  Google Scholar 

  15. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Machens, C.K. et al. Functional, but not anatomical, separation of 'what' and 'when' in prefrontal cortex. J. Neurosci. 30, 350–360 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Cohen, M.R. & Maunsell, J.H.R. A neuronal population measure of attention predicts behavioral performance on individual trials. J. Neurosci. 30, 15241–15253 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Luczak, A. et al. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62, 413–425 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Durstewitz, D. et al. Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning. Neuron 66, 438–448 (2010).

    CAS  Article  PubMed  Google Scholar 

  20. Bouchard, K.E. et al. Functional organization of human sensorimotor cortex for speech articulation. Nature 495, 327–332 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Brown, E.N. et al. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7, 456–461 (2004).

    CAS  Article  PubMed  Google Scholar 

  22. Seidemann, E., Meilijson, I., Abeles, M., Bergman, H. & Vaadia, E. Simultaneously recorded single units in the frontal cortex go through sequences of discrete and stable states in monkeys performing a delayed localization task. J. Neurosci. 16, 752–768 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Jones, L.M. et al. Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proc. Natl. Acad. Sci. USA 104, 18772–18777 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Ponce-Alvarez, A. et al. Dynamics of cortical neuronal ensembles transit from decision making to storage for later report. J. Neurosci. 32, 11956–11969 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Horwitz, G.D. & Newsome, W.T. Target selection for saccadic eye movements: prelude activity in the superior colliculus during a direction-discrimination task. J. Neurophysiol. 86, 2543–2558 (2001).

    CAS  PubMed  Article  Google Scholar 

  26. Bollimunta, A., Totten, D. & Ditterich, J. Neural dynamics of choice: single-trial analysis of decision-related activity in parietal cortex. J. Neurosci. 32, 12684–12701 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Sanger, T.D. & Kalaska, J.F. Crouching tiger, hidden dimensions. Nat. Neurosci. 17, 338–340 (2014).

    CAS  PubMed  Article  Google Scholar 

  28. Laurent, G. Olfactory network dynamics and the coding of multidimensional signals. Nat. Rev. Neurosci. 3, 884–895 (2002).

    CAS  Article  PubMed  Google Scholar 

  29. Churchland, M.M. et al. Cortical preparatory activity: representation of movement or first cog in a dynamical machine? Neuron 68, 387–400 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Vogels, T.P. et al. Neural network dynamics. Annu. Rev. Neurosci. 28, 357–376 (2005).

    CAS  PubMed  Article  Google Scholar 

  31. Nawrot, M.P. et al. Measurement of variability dynamics in cortical spike trains. J. Neurosci. Methods 169, 374–390 (2008).

    PubMed  Article  Google Scholar 

  32. Churchland, M.M. & Abbott, L.F. Two layers of neural variability. Nat. Neurosci. 15, 1472–1474 (2012).

    CAS  PubMed  Article  Google Scholar 

  33. Cunningham, J.P. et al. Methods for estimating neural firing rates, and their application to brain-machine interfaces. Neural Netw. 22, 1235–1246 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  34. Cox, D.R. & Isham, V. Point Processes (Chapman and Hall, London, 1980).

  35. Tolhurst, D.J., Movshon, J.A. & Dean, A.F. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res. 23, 775–785 (1983).

    CAS  PubMed  Article  Google Scholar 

  36. Afshar, A. et al. Single-trial neural correlates of arm movement preparation. Neuron 71, 555–564 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Levi, R. et al. The role of sensory network dynamics in generating a motor program. J. Neurosci. 25, 9807–9815 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Sasaki, T., Matsuki, N. & Ikegaya, Y. Metastability of active ca3 networks. J. Neurosci. 27, 517–528 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Ecker, A.S. et al. State dependence of noise correlations in macaque primary visual cortex. Neuron 82, 235–248 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Jun, J.K. et al. Heterogenous population coding of a short-term memory and decision task. J. Neurosci. 30, 916–929 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Shenoy, K.V. et al. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

    CAS  PubMed  Article  Google Scholar 

  42. Ames, K.C. et al. Neural dynamics of reaching following incorrect or absent motor preparation. Neuron 81, 438–451 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Sadtler, P.T. et al. Neural constraints on learning. Nature (in the press).

  44. Stopfer, M., Jayaraman, V. & Laurent, G. Intensity versus identity coding in an olfactory system. Neuron 39, 991–1004 (2003).

    CAS  Article  PubMed  Google Scholar 

  45. Brown, S.L. et al. Encoding a temporally structured stimulus with a temporally structured neural representation. Nat. Neurosci. 8, 1568–1576 (2005).

    CAS  PubMed  Article  Google Scholar 

  46. Bathellier, B. et al. Dynamic ensemble odor coding in the mammalian olfactory bulb: sensory information at different timescales. Neuron 57, 586–598 (2008).

    CAS  PubMed  Article  Google Scholar 

  47. Geffen, M.N. et al. Neural encoding of rapidly fluctuating odors. Neuron 61, 570–586 (2009).

    CAS  PubMed  Article  Google Scholar 

  48. Raman, B., Joseph, J., Tang, J. & Stopfer, M. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors. J. Neurosci. 30, 1994–2006 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Sussillo, D. & Abbott, L.F. Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544–557 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Ahrens, M.B. et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Freeman, J. et al. Mapping brain activity at scale with cluster computing. Nat. Methods 10.1038/nmeth.3041 (27 July 2014).

  52. Nicolelis, M.A., Baccala, L.A., Lin, R.C. & Chapin, J.K. Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268, 1353–1358 (1995).

    CAS  PubMed  Article  Google Scholar 

  53. Paz, R., Natan, C., Boraud, T., Bergman, H. & Vaadia, E. Emerging patterns of neuronal responses in supplementary and primary motor areas during sensorimotor adaptation. J. Neurosci. 25, 10941–10951 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Lin, L. et al. Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus. Proc. Natl. Acad. Sci. USA 102, 6125–6130 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. Narayanan, N.S. et al. Delay activity in rodent frontal cortex during a simple reaction time task. J. Neurophysiol. 101, 2859–2871 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  56. Bartho, P. et al. Population coding of tone stimuli in auditory cortex: dynamic rate vector analysis. Eur. J. Neurosci. 30, 1767–1778 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  57. Brendel, W. et al. Demixed principal component analysis. in Adv. Neural Inf. Process. Syst. 24, 2654–2662 (2011).

    Google Scholar 

  58. Carrillo-Reid, L. et al. Encoding network states by striatal cell assemblies. J. Neurophysiol. 99, 1435–1450 (2008).

    PubMed  Article  Google Scholar 

  59. Hallem, E.A. & Carlson, J.R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).

    CAS  PubMed  Article  Google Scholar 

  60. Cowley, B.R. et al. Datahigh: graphical user interface for visualizing and interacting with high-dimensional neural activity. J. Neural Eng. 10, 066012 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  61. Roweis, S. & Ghahramani, Z. A unifying review of linear gaussian models. Neural Comput. 11, 305–345 (1999).

    CAS  PubMed  Article  Google Scholar 

  62. Brown, E.N. et al. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neurosci. 18, 7411–7425 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Eden, U.T. et al. Dynamic analysis of neural encoding by point process adaptive filtering. Neural Comput. 16, 971–998 (2004).

    PubMed  Article  Google Scholar 

  64. Truccolo, W. et al. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol. 93, 1074–1089 (2005).

    PubMed  Article  Google Scholar 

  65. Wu, W. et al. Bayesian population decoding of motor cortical activity using a kalman filter. Neural Comput. 18, 80–118 (2006).

    Article  PubMed  Google Scholar 

  66. Pillow, J.W. et al. Spatio-temporal correlations and visual signaling in a complete neuronal population. Nature 454, 995–999 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Shimazaki, H. et al. State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data. PLOS Comput. Biol. 8, e1002385 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Abeles, M. et al. Cortical activity flips among quasi-stationary states. Proc. Natl. Acad. Sci. USA 92, 8616–8620 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Danoczy, M. & Hahnloser, R. Efficient estimation of hidden state dynamics from spike trains. in Adv. Neural Inf. Process. Syst. 18, 227–234 (2006).

    Google Scholar 

  70. Kemere, C. et al. Detecting neural-state transitions using hidden markov models for motor cortical prostheses. J. Neurophysiol. 100, 2441–2452 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  71. Smith, A.C. & Brown, E.N. Estimating a state-space model from point process observations. Neural Comput. 15, 965–991 (2003).

    Article  PubMed  Google Scholar 

  72. Kulkarni, J.E. & Paninski, L. Common-input models for multiple neural spike-train data. Network 18, 375–407 (2007).

    PubMed  Article  Google Scholar 

  73. Paninski, L. et al. A new look at state-space models for neural data. J. Comput. Neurosci. 29, 107–126 (2010).

    PubMed  Article  Google Scholar 

  74. Macke, J.H. et al. Empirical models of spiking in neural populations. Adv. Neural Inf. Process. Syst. 24, 1350–1358 (2011).

    Google Scholar 

  75. Buesing, L., Macke, J. & Sahani, M. Spectral learning of linear dynamics from generalized-linear observations with application to neural population data. Adv. Neural Inf. Process. Syst. 25, 1691–1699 (2012).

    Google Scholar 

  76. Pfau, D. et al. Robust learning of low-dimensional dynamics from large neural ensembles. Adv. Neural Inf. Process. Syst. 26, 2391–2399 (2013).

    Google Scholar 

  77. Yu, B.M. et al. Extracting dynamical structure embedded in neural activity. Adv. Neural Inf. Process. Syst. 18, 1545–1552 (2006).

    Google Scholar 

  78. Petreska, B. et al. Dynamical segmentation of single trials from population neural data. Adv. Neural Inf. Process. Syst. 24, 756–764 (2011).

    Google Scholar 

  79. Tenenbaum, J.B. et al. A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000).

    CAS  PubMed  Article  Google Scholar 

  80. Roweis, S.T. & Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000).

    CAS  PubMed  Article  Google Scholar 

  81. Boots, B. & Gordon, G. Two-manifold problems with applications to nonlinear system identification. in Proceedings of the 29th International Conference on Machine Learning (eds. Langford, J. & Pineau, J.) 623–630 (Omnipress, New York, 2012).

  82. Salinas, E. & Abbott, L.F. Vector reconstruction from firing rates. J. Comput. Neurosci. 1, 89–107 (1994).

    CAS  PubMed  Article  Google Scholar 

  83. Overschee, P.V. & Moor, B.D. Subspace Identification For Linear Systems: Theory, Implementation, Applications (Kluwer Academic Publishers, 1996).

  84. Diaconis, P. & Freedman, D. Asymptotics of graphical projection pursuit. Ann. Stat. 12, 793–815 (1984).

    Article  Google Scholar 

  85. Gerstein, G.L. & Perkel, D.H. Simultaneously recorded trains of action potentials: analysis and functional interpretation. Science 164, 828–830 (1969).

    CAS  PubMed  Article  Google Scholar 

  86. Cohen, M.R. & Kohn, A. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811–819 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. McCullagh, P. & Nelder, J.A. Generalized Linear Models, vol. 37 (Chapman and Hall, 1998).

  88. Lawhern, V. et al. Population decoding of motor cortical activity using a generalized linear model with hidden states. J. Neurosci. Methods 189, 267–280 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  89. Vidne, M. et al. Modeling the impact of common noise inputs on the network activity of retinal ganglion cells. J. Comput. Neurosci. 33, 97–121 (2012).

    PubMed  Article  Google Scholar 

  90. Shlens, J. et al. The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 26, 8254–8266 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Schneidman, E. et al. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Berkes, P. et al. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331, 83–87 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Kumar, A., Rotter, S. & Aertsen, A. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat. Rev. Neurosci. 11, 615–627 (2010).

    CAS  Article  PubMed  Google Scholar 

  94. Stanley, G.B., Li, F.F. & Dan, Y. Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus. J. Neurosci. 19, 8036–8042 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. Georgopoulos, A.P., Schwartz, A.B. & Kettner, R.E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986).

    CAS  Article  PubMed  Google Scholar 

  96. Gilja, V. et al. A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15, 1752–1757 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Baeg, E.H. et al. Dynamics of population code for working memory in the prefrontal cortex. Neuron 40, 177–188 (2003).

    CAS  PubMed  Article  Google Scholar 

  98. Hung, C.P. et al. Fast readout of object identity from macaque inferior temporal cortex. Science 310, 863–866 (2005).

    CAS  PubMed  Article  Google Scholar 

  99. Quiroga, R.Q. & Panzeri, S. Extracting information from neuronal populations: in formation theory and decoding approaches. Nat. Rev. Neurosci. 10, 173–185 (2009).

    Article  CAS  Google Scholar 

  100. Santhanam, G. et al. Factor-analysis methods for higher-performance neural prostheses. J. Neurophysiol. 102, 1315–1330 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the authors and publishers of the works highlighted in Figure 3 for permission to reuse portions of their figures. We thank C. Chandrasekaran, A. Miri, W. Newsome, B. Raman, and the members of the laboratories of A. Batista, S. Chase and M. Churchland for helpful discussion during the preparation of this manuscript. This work was supported by the Grossman Center for the Statistics of Mind (J.P.C.), the Simons Foundation (SCGB-325171 and SCGB-325233 to J.P.C.), the Gatsby Charitable Foundation (J.P.C.) and the US National Institutes of Health National Institute of Child Health and Human Development (R01-HD-071686 to B.M.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John P Cunningham or Byron M Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cunningham, J., Yu, B. Dimensionality reduction for large-scale neural recordings. Nat Neurosci 17, 1500–1509 (2014). https://doi.org/10.1038/nn.3776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3776

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing