Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nuclear BK channels regulate gene expression via the control of nuclear calcium signaling

A Corrigendum to this article was published on 21 November 2014

Abstract

Ion channels are essential for the regulation of neuronal functions. The significance of plasma membrane, mitochondrial, endoplasmic reticulum and lysosomal ion channels in the regulation of Ca2+ is well established. In contrast, surprisingly little is known about the function of ion channels on the nuclear envelope (NE). Here we demonstrate the presence of functional large-conductance, calcium-activated potassium channels (BK channels) on the NE of rodent hippocampal neurons. Functionally, blockade of nuclear BK channels (nBK channels) induces NE-derived Ca2+ release, nucleoplasmic Ca2+ elevation and cyclic AMP response element binding protein (CREB)-dependent transcription. More importantly, blockade of nBK channels regulates nuclear Ca2+–sensitive gene expression and promotes dendritic arborization in a nuclear Ca2+–dependent manner. These results suggest that the nBK channel functions as a molecular link between neuronal activity and nuclear Ca2+ to convey signals from synapse to nucleus and is a new modulator, operating at the NE, of synaptic activity–dependent neuronal functions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BK channels expression on the NE of hippocampal neurons.
Figure 2: nBK channels regulate nuclear transmembrane potential and nuclear Ca2+ concentration in intact neurons and isolated nuclei.
Figure 3: Blockade of nBK channels induces CREB phosphorylation in isolated nuclei and intact neurons.
Figure 4: nBK channels regulate synaptic activity–evoked [Ca2+]nu elevation, CREB phosphorylation and gene expression.
Figure 5: nBK channels regulate dendritic arborization via nuclear Ca2+–CaMKIV signaling.

Similar content being viewed by others

References

  1. Wheeler, D.G. et al. CaV1 and CaV2 channels engage distinct modes of Ca2+ signaling to control CREB-dependent gene expression. Cell 149, 1112–1124 (2012).

    Article  CAS  Google Scholar 

  2. Jiang, D., Zhao, L. & Clapham, D.E. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326, 144–147 (2009).

    Article  CAS  Google Scholar 

  3. Calcraft, P.J. et al. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459, 596–600 (2009).

    Article  CAS  Google Scholar 

  4. Dong, X.P. et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455, 992–996 (2008).

    Article  CAS  Google Scholar 

  5. Wegierski, T. et al. TRPP2 channels regulate apoptosis through the Ca2+ concentration in the endoplasmic reticulum. EMBO J. 28, 490–499 (2009).

    Article  CAS  Google Scholar 

  6. Bootman, M.D., Fearnley, C., Smyrnias, I., MacDonald, F. & Roderick, H.L. An update on nuclear calcium signalling. J. Cell Sci. 122, 2337–2350 (2009).

    Article  CAS  Google Scholar 

  7. Carafoli, E., Nicotera, P. & Santella, L. Calcium signalling in the cell nucleus. Cell Calcium 22, 313–319 (1997).

    Article  CAS  Google Scholar 

  8. Gerasimenko, O.V., Gerasimenko, J.V., Tepikin, A.V. & Petersen, O.H. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell 80, 439–444 (1995).

    Article  CAS  Google Scholar 

  9. Leite, M.F. et al. Nuclear and cytosolic calcium are regulated independently. Proc. Natl. Acad. Sci. USA 100, 2975–2980 (2003).

    Article  CAS  Google Scholar 

  10. Stehno-Bittel, L., Luckhoff, A. & Clapham, D.E. Calcium release from the nucleus by InsP3 receptor channels. Neuron 14, 163–167 (1995).

    Article  CAS  Google Scholar 

  11. Bading, H. Nuclear calcium signalling in the regulation of brain function. Nat. Rev. Neurosci. 14, 593–608 (2013).

    Article  CAS  Google Scholar 

  12. Zhang, S.J. et al. Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet. 5, e1000604 (2009).

    Article  Google Scholar 

  13. Mauceri, D., Freitag, H.E., Oliveira, A.M., Bengtson, C.P. & Bading, H. Nuclear calcium-VEGFD signaling controls maintenance of dendrite arborization necessary for memory formation. Neuron 71, 117–130 (2011).

    Article  CAS  Google Scholar 

  14. Limbäck-Stokin, K., Korzus, E., Nagaoka-Yasuda, R. & Mayford, M. Nuclear calcium/calmodulin regulates memory consolidation. J. Neurosci. 24, 10858–10867 (2004).

    Article  Google Scholar 

  15. Papadia, S., Stevenson, P., Hardingham, N.R., Bading, H. & Hardingham, G.E. Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J. Neurosci. 25, 4279–4287 (2005).

    Article  CAS  Google Scholar 

  16. Misonou, H. et al. Immunolocalization of the Ca2+-activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons. J. Comp. Neurol. 496, 289–302 (2006).

    Article  CAS  Google Scholar 

  17. Douglas, R.M. et al. The calcium-sensitive large-conductance potassium channel (BK/MAXI K) is present in the inner mitochondrial membrane of rat brain. Neuroscience 139, 1249–1261 (2006).

    Article  CAS  Google Scholar 

  18. Singh, H. et al. MitoBKCa is encoded by the Kcnma1 gene, and a splicing sequence defines its mitochondrial location. Proc. Natl. Acad. Sci. USA 110, 10836–10841 (2013).

    Article  CAS  Google Scholar 

  19. Gong, L.W., Gao, T.M., Huang, H., Zhuang, Z.Y. & Tong, Z. Transient forebrain ischemia induces persistent hyperactivity of large conductance Ca2+-activated potassium channels via oxidation modulation in rat hippocampal CA1 pyramidal neurons. Eur. J. Neurosci. 15, 779–783 (2002).

    Article  Google Scholar 

  20. Hu, H. et al. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J. Neurosci. 21, 9585–9597 (2001).

    Article  CAS  Google Scholar 

  21. Lee, U.S. & Cui, J. BK channel activation: structural and functional insights. Trends Neurosci. 33, 415–423 (2010).

    Article  CAS  Google Scholar 

  22. Salkoff, L., Butler, A., Ferreira, G., Santi, C. & Wei, A. High-conductance potassium channels of the SLO family. Nat. Rev. Neurosci. 7, 921–931 (2006).

    Article  CAS  Google Scholar 

  23. Fricker, M., Hollinshead, M., White, N. & Vaux, D. Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J. Cell Biol. 136, 531–544 (1997).

    Article  CAS  Google Scholar 

  24. Quesada, I. et al. Nuclear KATP channels trigger nuclear Ca2+ transients that modulate nuclear function. Proc. Natl. Acad. Sci. USA 99, 9544–9549 (2002).

    Article  CAS  Google Scholar 

  25. Wu, B., Yamaguchi, H., Lai, F.A. & Shen, J. Presenilins regulate calcium homeostasis and presynaptic function via ryanodine receptors in hippocampal neurons. Proc. Natl. Acad. Sci. USA 110, 15091–15096 (2013).

    Article  CAS  Google Scholar 

  26. Deisseroth, K., Mermelstein, P.G., Xia, H. & Tsien, R.W. Signaling from synapse to nucleus: the logic behind the mechanisms. Curr. Opin. Neurobiol. 13, 354–365 (2003).

    Article  CAS  Google Scholar 

  27. Han, M.H. et al. Role of cAMP response element-binding protein in the rat locus ceruleus: regulation of neuronal activity and opiate withdrawal behaviors. J. Neurosci. 26, 4624–4629 (2006).

    Article  CAS  Google Scholar 

  28. Sheng, M., Thompson, M.A. & Greenberg, M.E. CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427–1430 (1991).

    Article  CAS  Google Scholar 

  29. Bito, H., Deisseroth, K. & Tsien, R.W. CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214 (1996).

    Article  CAS  Google Scholar 

  30. Xing, J., Ginty, D.D. & Greenberg, M.E. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959–963 (1996).

    Article  CAS  Google Scholar 

  31. Hardingham, G.E., Arnold, F.J. & Bading, H. Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat. Neurosci. 4, 261–267 (2001).

    Article  CAS  Google Scholar 

  32. Rodrigues, M.A. et al. Nucleoplasmic calcium is required for cell proliferation. J. Biol. Chem. 282, 17061–17068 (2007).

    Article  CAS  Google Scholar 

  33. Lin, Y. et al. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 455, 1198–1204 (2008).

    Article  CAS  Google Scholar 

  34. Ramamoorthi, K. et al. Npas4 regulates a transcriptional program in CA3 required for contextual memory formation. Science 334, 1669–1675 (2011).

    Article  CAS  Google Scholar 

  35. Meredith, A.L., Thorneloe, K.S., Werner, M.E., Nelson, M.T. & Aldrich, R.W. Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel. J. Biol. Chem. 279, 36746–36752 (2004).

    Article  CAS  Google Scholar 

  36. Meredith, A.L. et al. BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat. Neurosci. 9, 1041–1049 (2006).

    Article  CAS  Google Scholar 

  37. Sausbier, M. et al. Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc. Natl. Acad. Sci. USA 101, 9474–9478 (2004).

    Article  CAS  Google Scholar 

  38. Xu, W. et al. Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science 298, 1029–1033 (2002).

    Article  CAS  Google Scholar 

  39. Mazzanti, M., Bustamante, J.O. & Oberleithner, H. Electrical dimension of the nuclear envelope. Physiol. Rev. 81, 1–19 (2001).

    Article  CAS  Google Scholar 

  40. Dick, D.A. The distribution of sodium, potassium and chloride in the nucleus and cytoplasm of Bufo bufo oocytes measured by electron microprobe analysis. J. Physiol. (Lond.) 284, 37–53 (1978).

    Article  CAS  Google Scholar 

  41. Garner, M.H. Na,K-ATPase in the nuclear envelope regulates Na+: K+ gradients in hepatocyte nuclei. J. Membr. Biol. 187, 97–115 (2002).

    Article  CAS  Google Scholar 

  42. Gifford, J.D., Galla, J.H., Luke, R.G. & Rick, R. Ion concentrations in the rat CCD: differences between cell types and effect of alkalosis. Am. J. Physiol. 259, F778–F782 (1990).

    CAS  PubMed  Google Scholar 

  43. Rick, R. pHi determines rate of sodium transport in frog skin: results of a new method to determine pHi. Am. J. Physiol. 266, F367–F374 (1994).

    Article  CAS  Google Scholar 

  44. Endo, M. Calcium-induced calcium release in skeletal muscle. Physiol. Rev. 89, 1153–1176 (2009).

    Article  CAS  Google Scholar 

  45. Chen, S.R., Li, X., Ebisawa, K. & Zhang, L. Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J. Biol. Chem. 272, 24234–24246 (1997).

    Article  CAS  Google Scholar 

  46. Zahradníková, A. & Meszaros, L.G. Voltage change-induced gating transitions of the rabbit skeletal muscle Ca2+ release channel. J. Physiol. (Lond.) 509, 29–38 (1998).

    Article  Google Scholar 

  47. van Welie, I. & du Lac, S. Bidirectional control of BK channel open probability by CAMKII and PKC in medial vestibular nucleus neurons. J. Neurophysiol. 105, 1651–1659 (2011).

    Article  CAS  Google Scholar 

  48. Loane, D.J., Hicks, G.A., Perrino, B.A. & Marrion, N.V. Inhibition of BK channel activity by association with calcineurin in rat brain. Eur. J. Neurosci. 24, 433–441 (2006).

    Article  Google Scholar 

  49. Shamloo, M. et al. Npas4, a novel helix-loop-helix PAS domain protein, is regulated in response to cerebral ischemia. Eur. J. Neurosci. 24, 2705–2720 (2006).

    Article  Google Scholar 

  50. Huang, L., Li, B., Li, W., Guo, H. & Zou, F. ATP-sensitive potassium channels control glioma cells proliferation by regulating ERK activity. Carcinogenesis 30, 737–744 (2009).

    Article  CAS  Google Scholar 

  51. Avdonin, V., Tang, X.D. & Hoshi, T. Stimulatory action of internal protons on Slo1 BK channels. Biophys. J. 84, 2969–2980 (2003).

    Article  CAS  Google Scholar 

  52. Tang, X.D. et al. Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature 425, 531–535 (2003).

    Article  CAS  Google Scholar 

  53. Taylor, C.W. et al. IP3 receptors: some lessons from DT40 cells. Immunol. Rev. 231, 23–44 (2009).

    Article  CAS  Google Scholar 

  54. Cao, X. et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat. Med. 19, 773–777 (2013).

    Article  CAS  Google Scholar 

  55. Woo, R.S. et al. Neuregulin-1 enhances depolarization-induced GABA release. Neuron 54, 599–610 (2007).

    Article  CAS  Google Scholar 

  56. Chen, Y.J. et al. ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation. Proc. Natl. Acad. Sci. USA 107, 21818–21823 (2010).

    Article  CAS  Google Scholar 

  57. Li, X.M. et al. Contribution of downregulation of L-type calcium currents to delayed neuronal death in rat hippocampus after global cerebral ischemia and reperfusion. J. Neurosci. 27, 5249–5259 (2007).

    Article  CAS  Google Scholar 

  58. Hristov, K.L., Chen, M., Kellett, W.F., Rovner, E.S. & Petkov, G.V. Large-conductance voltage- and Ca2+-activated K+ channels regulate human detrusor smooth muscle function. Am. J. Physiol. Cell Physiol. 301, C903–C912 (2011).

    Article  CAS  Google Scholar 

  59. Zhuang, X., Semenova, E., Maric, D. & Craigie, R. Dephosphorylation of barrier-to-autointegration factor by protein phosphatase 4 and its role in cell mitosis. J. Biol. Chem. 289, 1119–1127 (2014).

    Article  CAS  Google Scholar 

  60. Muller, F.L. et al. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature 488, 337–342 (2012).

    Article  CAS  Google Scholar 

  61. Cameron, P.H., Chevet, E., Pluquet, O., Thomas, D.Y. & Bergeron, J.J. Calnexin phosphorylation attenuates the release of partially misfolded alpha1-antitrypsin to the secretory pathway. J. Biol. Chem. 284, 34570–34579 (2009).

    Article  CAS  Google Scholar 

  62. Obexer, P. et al. p16INK4A sensitizes human leukemia cells to FAS- and glucocorticoid-induced apoptosis via induction of BBC3/Puma and repression of MCL1 and BCL2. J. Biol. Chem. 284, 30933–30940 (2009).

    Article  CAS  Google Scholar 

  63. Zaru, R., Ronkina, N., Gaestel, M., Arthur, J.S. & Watts, C. The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nat. Immunol. 8, 1227–1235 (2007).

    Article  CAS  Google Scholar 

  64. Gehani, S.S. et al. Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol. Cell 39, 886–900 (2010).

    Article  CAS  Google Scholar 

  65. Tai, Y. et al. TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J. Cell Sci. 121, 2301–2307 (2008).

    Article  CAS  Google Scholar 

  66. Muller, M., Cardenas, C., Mei, L., Cheung, K.H. & Foskett, J.K. Constitutive cAMP response element binding protein (CREB) activation by Alzheimer's disease presenilin-driven inositol trisphosphate receptor (InsP3R) Ca2+ signaling. Proc. Natl. Acad. Sci. USA 108, 13293–13298 (2011).

    Article  CAS  Google Scholar 

  67. Yu, C. et al. Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells. Cancer Res. 62, 188–199 (2002).

    CAS  PubMed  Google Scholar 

  68. Fei, Z., Bera, T.K., Liu, X., Xiang, L. & Pastan, I. Ankrd26 gene disruption enhances adipogenesis of mouse embryonic fibroblasts. J. Biol. Chem. 286, 27761–27768 (2011).

    Article  CAS  Google Scholar 

  69. Wei, F., Scholer, H.R. & Atchison, M.L. Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J. Biol. Chem. 282, 21551–21560 (2007).

    Article  CAS  Google Scholar 

  70. Walton, P.D. et al. Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. J. Cell Biol. 113, 1145–1157 (1991).

    Article  CAS  Google Scholar 

  71. Beliveau, F. et al. Essential role of endocytosis of the type II transmembrane serine protease TMPRSS6 in regulating its functionality. J. Biol. Chem. 286, 29035–29043 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank X. Tang (Nankai University) for BK-GFP plasmid, M. Nathanson (Yale University) for PV-NLS plasmid, H. Bading (University of Heidelberg) for CaMKIVK75E and CaMBP4 plasmids, and F.-X. Liang and the Microscopy Core of New York University Medical Center for immunoelectron microscopy analysis. This work was supported by the National Natural Science Foundation of China (grants 81030022, 81329003 and U1201225 to T.-M.G., 30900581 to B.L., 81001129 to L.H.), the Program for Changjiang Scholars and Innovative Research Team (grant IRT1142), Guangdong Natural Science Foundation (grants 9351051501000003 and CXZD1018 to T.-M.G., 10451051501004726 to L.H.), Guangzhou Science and Technology Project (grant 7411802013939), Medical Scientific Research Foundation of Guangdong Province (B2010170 to L.H.) and the US National Heart, Lung, and Blood Institute (grant R01-HL102758 to A.L.M.).

Author information

Authors and Affiliations

Authors

Contributions

B.L. and T.-M.G. designed the study; B.L., W.J. and L.H. conducted biochemistry, Ca2+ imaging and immunocytochemistry experiments; B.L., P.W. and Z.L. conducted electrophysiological experiments; B.L. and S.L. cultured neurons; A.K.F., A.L.M., M.-H.H. and X.-H.Z. contributed new reagents or analytic tools; B.L., W.J., P.W., Z.L. and L.H. collected and analyzed data; B.L., L.H. and T.-M.G. wrote the manuscript.

Corresponding author

Correspondence to Tian-Ming Gao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 BK β4 subunits are expressed in the nuclear envelope.

The distribution of BK channel β4 subunits (red) was examined by confocal immunofluorescence in cultured hippocampal neurons. Intracellular ring-like labeling around the nucleus was observed and colocalized with lamin B (green). Scale bar represents 20 μm.

Supplementary Figure 2 The effects of BK channel shRNAs on nBK channel expression and nuclear Ca2+ signal.

(a) BK channel expression after knockdown by two pairs of lentiviral shRNAs. (b) Paxilline-induced changes in Fluo-4 AM fluorescence intensity in the isolated nuclei after knockdown of BK channel (n = 25 nuclei for each group, unpaired t-test, P = 1.83 × 10−7, t48 = 6.09). (c) Paxilline-induced changes in Fluo-4 dextran fluorescence intensity in the isolated nuclei after knockdown of BK channel (n = 25 nuclei for each group, unpaired t-test, P = 2.67 × 10−7, t48 = 5.98). The bottom and top of the box represent the first and third quartiles, and the band inside the box is the median. The whisker represents the minimum and maximum of all of the data. **P < 0.01. The full-length blots for a are presented in Supplementary Figure 7.

Supplementary Figure 3 RyR expression was downregulated by RyR shRNA.

(a) RyRs mRNA level after knockdown by shRNAs. GAPDH was used as control. One-way ANOVA (N = 3 for each group, P = 9.47 × 10−6, F3,8 = 57.27) and post hoc test. (b) RyRs protein level after knockdown by shRNAs. Fisher's least significant difference test was used for post hoc test in one-way ANOVA. Error bars represent the mean ± s.e.m.. **P < 0.01. The full-length blots for b are presented in Supplementary Figure 7.

Supplementary Figure 4 The effects of IbTx on pmBK channel activity and expression.

(a) Outward potassium channel currents were recorded in whole-cell patch clamp to show that paxilline (10 μM) had no additive effect on pmBK channel blockade by IbTx (100 μM). The recording solution contains 1mM 4-AP, 1μM TTX, and 5μM glybenclamide. (b) The effects of IbTx (100 μM) and IbTx (100 μM)+paxilline (10 μM) on action potentials. IbTx broadened the action potential by blocking BK channels. Paxilline did not show additive effects. (c) Pre-incubation (10 min) of IbTx did not affect BK channel expression on plasma membrane. Membrane proteins were isolated as described in Methods section. Na/K ATPase was used as loading control. The full-length blots for c are presented in Supplementary Figure 7.

Supplementary Figure 5 Validation for shRNAs against nBK channel-regulated genes.

mRNA level of Fos, Npas4, Atf3, Btg2, Bcl6 and Ifi202b after knockdown by shRNAs as indicated. One-way ANOVA (N = 3 independent cultures from at least 3 litters for each group; P = 1.77 × 10−5, F2,6 = 112.05 for Fos; P = 1.70 × 10−6, F2,6 = 248.60 for Npas4; P = 2.47 × 10−5, F2,6 = 99.99 for Atf3; P = 1.09 × 10−5, F2,6 = 132.38 for Btg2; P = 2.84 × 10−5, F2,6 = 95.38 for Bcl6; P = 1.09 × 10−5, F2,6 = 132.29 for Ifi202b) and post hoc test. Fisher's least significant difference test was used for post hoc test in one-way ANOVA. Error bars represent the mean ± s.e.m..

Supplementary Figure 6 The effects of nBK channel-regulated genes on dendritic arborization.

(a) Representative micrographs of hippocampal neurons transfected with GFP-tagged plasmids containing gene-specific shRNAs or non-silencing shRNAs with the treatment of DMSO. (b) Sholl analysis (left) and quantification of total dendritic length (right) in hippocampal neurons treated as indicated. Right, one-way ANOVA (P = 0.042, F6,133 = 2.26) and post hoc test. N = 20 cells from 4 independent cultures from at least 4 litters for each group. Fisher's least significant difference test was used for post hoc test in one-way ANOVA. Error bars represent the mean ± s.e.m.. Scale bar = 30 μm. **P < 0.01. N.S., non-silencing shRNAs.

Supplementary Figure 7 Full length images of the blots presented in the figures.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Jie, W., Huang, L. et al. Nuclear BK channels regulate gene expression via the control of nuclear calcium signaling. Nat Neurosci 17, 1055–1063 (2014). https://doi.org/10.1038/nn.3744

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing