Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Direct and indirect pathways of basal ganglia: a critical reappraisal

Abstract

The basal ganglia are subcortical nuclei controlling voluntary actions and have been implicated in Parkinson's disease (PD). The prevailing model of basal ganglia function states that two circuits, the direct and indirect pathways, originate from distinct populations of striatal medium spiny neurons (MSNs) and project to different output structures. These circuits are believed to have opposite effects on movement. Specifically, the activity of direct pathway MSNs is postulated to promote movement, whereas the activation of indirect pathway MSNs is hypothesized to inhibit it. Recent findings have revealed that this model might not fully account for the concurrent activation of both pathways during movement. Accordingly, we propose a model in which intrastriatal connections are critical and the two pathways are structurally and functionally intertwined. Thus, all MSNs might either facilitate or inhibit movement depending on the form of synaptic plasticity expressed at a certain moment. In PD, alterations of dopamine-dependent synaptic plasticity could alter this coordinated activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the direct/indirect pathway classical model in the physiological condition and in Parkinson's disease.

Kim Caesar/Nature Publishing Group

Figure 2: Signaling pathways downstream of D1-like and D1-D2 heteromer receptor activation.

Kim Caesar/Nature Publishing Group

Figure 3: Role of MSNs and cholinergic interneurons in the production and functions of endocannabinoids in the striatum.

Kim Caesar/Nature Publishing Group

Figure 4: Integrative hypothesis for the role of striatal circuits in controlling motor activity in the physiological condition and in Parkinson's disease.

Kim Caesar/Nature Publishing Group

Similar content being viewed by others

References

  1. Seneca, L.A. Moral letters to Lucilius (Epistulae morales ad Lucilium): a Loeb Classical Library edition, Vol. 1 (ed. Gummere, R.M.) (W. Heinemann, 1917).

  2. DiFiglia, M., Pasik, P. & Pasik, T. A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res. 114, 245–256 (1976).

    CAS  PubMed  Google Scholar 

  3. Dubé, L., Smith, A.D. & Bolam, J.P. Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium-size spiny neurons in the rat neostriatum. J. Comp. Neurol. 267, 455–471 (1988).

    PubMed  Google Scholar 

  4. Lapper, S.R. & Bolam, J.P. Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51, 533–545 (1992).

    CAS  PubMed  Google Scholar 

  5. Pickel, V.M., Chan, J. & Sesack, S.R. Cellular basis for interactions between catecholaminergic afferents and neurons containing Leu-enkephalin-like immunoreactivity in rat caudate-putamen nuclei. J. Neurosci. Res. 31, 212–230 (1992).

    CAS  PubMed  Google Scholar 

  6. Bouyer, J.J., Park, D.H., Joh, T.H. & Pickel, V.M. Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum. Brain Res. 302, 267–275 (1984).

    CAS  PubMed  Google Scholar 

  7. Kawaguchi, Y., Wilson, C.J., Augood, S.J. & Emson, P.C. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 18, 527–535 (1995).

    CAS  PubMed  Google Scholar 

  8. Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    CAS  PubMed  Google Scholar 

  9. DeLong, M.R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).

    CAS  PubMed  Google Scholar 

  10. Gerfen, C.R. et al. D1 and D2 dopamine receptor–regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990).

    CAS  PubMed  Google Scholar 

  11. Gerfen, C.R. & Surmeier, D.J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bateup, H.S. et al. Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc. Natl. Acad. Sci. USA 107, 14845–14850 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Valjent, E., Bertran-Gonzalez, J., Herve, D., Fisone, G. & Girault, J.A. Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice. Trends Neurosci. 32, 538–547 (2009).

    CAS  PubMed  Google Scholar 

  14. Kawaguchi, Y., Wilson, C.J. & Emson, P.C. Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J. Neurophysiol. 62, 1052–1068 (1989).

    CAS  PubMed  Google Scholar 

  15. Cepeda, C. et al. Differential electrophysiological properties of dopamine D1 and D2 receptor–containing striatal medium-sized spiny neurons. Eur. J. Neurosci. 27, 671–682 (2008).

    PubMed  Google Scholar 

  16. Kreitzer, A.C. & Malenka, R.C. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445, 643–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Day, M., Wokosin, D., Plotkin, J.L., Tian, X. & Surmeier, D.J. Differential excitability and modulation of striatal medium spiny neuron dendrites. J. Neurosci. 28, 11603–11614 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gertler, T.S., Chan, C.S. & Surmeier, D.J. Dichotomous anatomical properties of adult striatal medium spiny neurons. J. Neurosci. 28, 10814–10824 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Day, M. et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat. Neurosci. 9, 251–259 (2006).

    CAS  PubMed  Google Scholar 

  20. Calabresi, P. et al. Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J. Neurosci. 20, 8443–8451 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Calabresi, P., Maj, R., Mercuri, N.B. & Bernardi, G. Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci. Lett. 142, 95–99 (1992).

    CAS  PubMed  Google Scholar 

  22. Calabresi, P., Maj, R., Pisani, A., Mercuri, N.B. & Bernardi, G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci. 12, 4224–4233 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lovinger, D.M., Tyler, E.C. & Merritt, A. Short- and long-term synaptic depression in rat neostriatum. J. Neurophysiol. 70, 1937–1949 (1993).

    CAS  PubMed  Google Scholar 

  24. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kravitz, A.V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hikosaka, O., Nakamura, K. & Nakahara, H. Basal ganglia orient eyes to reward. J. Neurophysiol. 95, 567–584 (2006).

    PubMed  Google Scholar 

  27. Redgrave, P. et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nat. Rev. Neurosci. 11, 760–772 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tai, L.H., Lee, A.M., Benavidez, N., Bonci, A. & Wilbrecht, L. Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat. Neurosci. 15, 1281–1289 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Eshel, N. & Roiser, J.P. Reward and punishment processing in depression. Biol. Psychiatry 68, 118–124 (2010).

    PubMed  Google Scholar 

  30. Koob, G.F. & Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–238 (2010).

    Article  PubMed  Google Scholar 

  31. Kravitz, A.V., Tye, L.D. & Kreitzer, A.C. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816–818 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hikida, T., Kimura, K., Wada, N., Funabiki, K. & Nakanishi, S. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66, 896–907 (2010).

    CAS  PubMed  Google Scholar 

  33. Ferguson, S.M. et al. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat. Neurosci. 14, 22–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Voon, V. et al. Chronic dopaminergic stimulation in Parkinson's disease: from dyskinesias to impulse control disorders. Lancet Neurol. 8, 1140–1149 (2009).

    CAS  PubMed  Google Scholar 

  35. Vitek, J.L. et al. Randomized trial of pallidotomy versus medical therapy for Parkinson's disease. Ann. Neurol. 53, 558–569 (2003).

    PubMed  Google Scholar 

  36. Alvarez, L. et al. Bilateral subthalamotomy in Parkinson's disease: initial and long-term response. Brain 128, 570–583 (2005).

    CAS  PubMed  Google Scholar 

  37. Fasano, A., Daniele, A. & Albanese, A. Treatment of motor and non-motor features of Parkinson's disease with deep brain stimulation. Lancet Neurol. 11, 429–442 (2012).

    PubMed  Google Scholar 

  38. Odekerken, V.J. et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomized controlled trial. Lancet Neurol. 12, 37–44 (2013).

    PubMed  Google Scholar 

  39. Schuepbach, W.M. et al. Neurostimulation for Parkinson's disease with early motor complications. N. Engl. J. Med. 368, 610–622 (2013).

    CAS  PubMed  Google Scholar 

  40. Krack, P., Hariz, M.I., Baunez, C., Guridi, J. & Obeso, J.A. Deep brain stimulation: from neurology to psychiatry? Trends Neurosci. 33, 474–484 (2010).

    CAS  PubMed  Google Scholar 

  41. Vonsattel, J.P. et al. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neurol. 44, 559–577 (1985).

    CAS  PubMed  Google Scholar 

  42. André, V.M. et al. Differential electrophysiological changes in striatal output neurons in Huntington's disease. J. Neurosci. 31, 1170–1182 (2011).

    PubMed  PubMed Central  Google Scholar 

  43. Freeze, B.S., Kravitz, A.V., Hammack, N., Berke, J.D. & Kreitzer, A.C. Control of basal ganglia output by direct and indirect pathway projection neurons. J. Neurosci. 33, 18531–18539 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Durieux, P.F. et al. D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat. Neurosci. 12, 393–395 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Kress, G.J. et al. Convergent cortical innervation of striatal projection neurons. Nat. Neurosci. 16, 665–667 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kramer, P.F. et al. Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice. J. Neurosci. 31, 126–132 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bagetta, V. et al. Dopamine-dependent long-term depression is expressed in striatal spiny neurons of both direct and indirect pathways: implications for Parkinson's disease. J. Neurosci. 31, 12513–12522 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Deng, Y.P., Lei, W.L. & Reiner, A. Differential perikaryal localization in rats of D1 and D2 dopamine receptors on striatal projection neuron types identified by retrograde labeling. J. Chem. Neuroanat. 32, 101–116 (2006).

    CAS  PubMed  Google Scholar 

  50. Chan, C.S. et al. Strain-specific regulation of striatal phenotype in Drd2-eGFP BAC transgenic mice. J. Neurosci. 32, 9124–9132 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nelson, A.B. et al. A comparison of striatal-dependent behaviors in wild-type and hemizygous Drd1a and Drd2 BAC transgenic mice. J. Neurosci. 32, 9119–9123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cazorla, M. et al. Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron 81, 153–164 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawaguchi, Y., Wilson, C.J. & Emson, P.C. Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J. Neurosci. 10, 3421–3438 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lévesque, M. & Parent, A. The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc. Natl. Acad. Sci. USA 102, 11888–11893 (2005).

    PubMed  PubMed Central  Google Scholar 

  55. Parent, A., Charara, A. & Pinault, D. Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res. 698, 280–284 (1995).

    CAS  PubMed  Google Scholar 

  56. Nadjar, A. et al. Phenotype of striatofugal medium spiny neurons in parkinsonian and dyskinetic nonhuman primates: a call for a reappraisal of the functional organization of the basal ganglia. J. Neurosci. 26, 8653–8661 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hasbi, A. et al. Calcium signaling cascade links dopamine D1–D2 receptor heteromer to striatal BDNF production and neuronal growth. Proc. Natl. Acad. Sci. USA 106, 21377–21382 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Perreault, M.L., Hasbi, A., O'Dowd, B.F. & George, S.R. Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology 39, 156–168 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. Calabresi, P., Picconi, B., Tozzi, A. & Di Filippo, M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 30, 211–219 (2007).

    CAS  PubMed  Google Scholar 

  60. Jia, Y., Gall, C.M. & Lynch, G. Presynaptic BDNF promotes postsynaptic long-term potentiation in the dorsal striatum. J. Neurosci. 30, 14440–14445 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lovinger, D.M. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58, 951–961 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Calabresi, P., Di Filippo, M., Ghiglieri, V., Tambasco, N. & Picconi, B. Levodopa-induced dyskinesias in patients with Parkinson's disease: filling the bench-to-bedside gap. Lancet Neurol. 9, 1106–1117 (2010).

    CAS  PubMed  Google Scholar 

  63. Russo, S.J., Mazei-Robison, M.S., Ables, J.L. & Nestler, E.J. Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 56 (suppl. 1) 73–82 (2009).

    CAS  PubMed  Google Scholar 

  64. Adermark, L., Talani, G. & Lovinger, D.M. Endocannabinoid-dependent plasticity at GABAergic and glutamatergic synapses in the striatum is regulated by synaptic activity. Eur. J. Neurosci. 29, 32–41 (2009).

    PubMed  PubMed Central  Google Scholar 

  65. Gerdeman, G.L., Ronesi, J. & Lovinger, D.M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat. Neurosci. 5, 446–451 (2002).

    CAS  PubMed  Google Scholar 

  66. Mathur, B.N. & Lovinger, D.M. Endocannabinoid-dopamine interactions in striatal synaptic plasticity. Front Pharmacol 3, 66 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. Adermark, L. & Lovinger, D.M. Retrograde endocannabinoid signaling at striatal synapses requires a regulated postsynaptic release step. Proc. Natl. Acad. Sci. USA 104, 20564–20569 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yin, H.H. & Lovinger, D.M. Frequency-specific and D2 receptor–mediated inhibition of glutamate release by retrograde endocannabinoid signaling. Proc. Natl. Acad. Sci. USA 103, 8251–8256 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ronesi, J., Gerdeman, G.L. & Lovinger, D.M. Disruption of endocannabinoid release and striatal long-term depression by postsynaptic blockade of endocannabinoid membrane transport. J. Neurosci. 24, 1673–1679 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, Z. et al. Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 50, 443–452 (2006).

    CAS  PubMed  Google Scholar 

  71. Tozzi, A. et al. The distinct role of medium spiny neurons and cholinergic interneurons in the D2/A2A receptor interaction in the striatum: implications for Parkinson's disease. J. Neurosci. 31, 1850–1862 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Di Filippo, M. et al. The endocannabinoid system in Parkinson's disease. Curr. Pharm. Des. 14, 2337–2347 (2008).

    CAS  PubMed  Google Scholar 

  73. Pisani, V. et al. Homeostatic changes of the endocannabinoid system in Parkinson's disease. Mov. Disord. 26, 216–222 (2011).

    PubMed  Google Scholar 

  74. Gubellini, P. et al. Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J. Neurosci. 22, 6900–6907 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Maccarrone, M. et al. Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism. J. Neurochem. 85, 1018–1025 (2003).

    CAS  PubMed  Google Scholar 

  76. Gerdeman, G.L., Partridge, J.G., Lupica, C.R. & Lovinger, D.M. It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci. 26, 184–192 (2003).

    CAS  PubMed  Google Scholar 

  77. Nazzaro, C. et al. SK channel modulation rescues striatal plasticity and control over habit in cannabinoid tolerance. Nat. Neurosci. 15, 284–293 (2012).

    CAS  PubMed  Google Scholar 

  78. Vincent, S.R. Nitric oxide neurons and neurotransmission. Prog. Neurobiol. 90, 246–255 (2010).

    CAS  PubMed  Google Scholar 

  79. Fino, E. & Venance, L. Spike-timing dependent plasticity in striatal interneurons. Neuropharmacology 60, 780–788 (2011).

    CAS  PubMed  Google Scholar 

  80. West, A.R. & Tseng, K.Y. Nitric oxide–soluble guanylyl cyclase–cyclic GMP signaling in the striatum: new targets for the treatment of Parkinson's disease? Front. Syst. Neurosci. 5, 55 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Calabresi, P. et al. A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression. J. Neurosci. 19, 2489–2499 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Picconi, B. et al. Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain 134, 375–387 (2011).

    PubMed  Google Scholar 

  83. Arcangeli, S. et al. Ischemic-LTP in striatal spiny neurons of both direct and indirect pathway requires the activation of D1-like receptors and NO/soluble guanylate cyclase/cGMP transmission. J. Cereb. Blood Flow Metab. 33, 278–286 (2013).

    CAS  PubMed  Google Scholar 

  84. Aziz, T.Z., Peggs, D., Sambrook, M.A. & Crossman, A.R. Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov. Disord. 6, 288–292 (1991).

    CAS  PubMed  Google Scholar 

  85. Bergman, H., Wichmann, T. & DeLong, M.R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249, 1436–1438 (1990).

    CAS  PubMed  Google Scholar 

  86. Lang, A.E. et al. Posteroventral medial pallidotomy in advanced Parkinson's disease. N. Engl. J. Med. 337, 1036–1042 (1997).

    CAS  PubMed  Google Scholar 

  87. Levy, R. et al. Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson's disease. J. Neurophysiol. 86, 249–260 (2001).

    CAS  PubMed  Google Scholar 

  88. Lewitt, P.A. Levodopa for the treatment of Parkinson's disease. N. Engl. J. Med. 359, 2468–2476 (2008).

    CAS  PubMed  Google Scholar 

  89. Jenner, P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat. Rev. Neurosci. 9, 665–677 (2008).

    CAS  PubMed  Google Scholar 

  90. Mercuri, N.B. & Bernardi, G. The 'magic' of L-dopa: why is it the gold standard Parkinson's disease therapy? Trends Pharmacol. Sci. 26, 341–344 (2005).

    CAS  PubMed  Google Scholar 

  91. Perez-Lloret, S. & Rascol, O. Dopamine receptor agonists for the treatment of early or advanced Parkinson's disease. CNS Drugs 24, 941–968 (2010).

    CAS  PubMed  Google Scholar 

  92. Bagetta, V. et al. Rebalance of striatal NMDA/AMPA receptor ratio underlies the reduced emergence of dyskinesia during D2-like dopamine agonist treatment in experimental Parkinson's disease. J. Neurosci. 32, 17921–17931 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Connolly, B.S. & Fox, S.H. Drug treatments for the neuropsychiatric complications of Parkinson's disease. Expert Rev. Neurother. 12, 1439–1449 (2012).

    CAS  PubMed  Google Scholar 

  94. Toy, W.A. et al. Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Neurobiol. Dis. 63, 201–209 (2014).

    CAS  PubMed  Google Scholar 

  95. Costa, R.M. et al. Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron 52, 359–369 (2006).

    CAS  PubMed  Google Scholar 

  96. Hammond, C., Bergman, H. & Brown, P. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci. 30, 357–364 (2007).

    CAS  PubMed  Google Scholar 

  97. Kasanetz, F., Riquelme, L.A., Della-Maggiore, V., O'Donnell, P. & Murer, M.G. Functional integration across a gradient of corticostriatal channels controls UP state transitions in the dorsal striatum. Proc. Natl. Acad. Sci. USA 105, 8124–8129 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zold, C.L., Escande, M.V., Pomata, P.E., Riquelme, L.A. & Murer, M.G. Striatal NMDA receptors gate cortico-pallidal synchronization in a rat model of Parkinson's disease. Neurobiol. Dis. 47, 38–48 (2012).

    CAS  PubMed  Google Scholar 

  99. Jin, X. & Costa, R.M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466, 457–462 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Calabresi, P. & Di Filippo, M. Neuroscience: brain's traffic lights. Nature 466, 449 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Pisani for reading the manuscript and for critical discussion. This work was supported by Progetto di Ricerca di Interesse Nazionale (PRIN) 2011 2010AHHP5H (to P.C.) and Progetto del Ministero della Salute, Giovani Ricercatori (GR-2008-1142336 to B.P.; GR-2010-2316671 to V.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Calabresi.

Ethics declarations

Competing interests

P.C. serves as an editorial board member of Lancet Neurology, The Journal of Neuroscience, Movement Disorders and Synapse, and receives research support from Bayer Schering, Biogen, Boehringer Ingelheim, Eisai, Merck Sharp & Dohme, Novartis, Lundbeck, Sanofi-Aventis, Sigma-Tau, UCB Pharma, Ricerca Corrente IRCCS, Ricerca Finalizzata IRCCS (European Community Grants SYNSCAFF and REPLACES), the Italian Minister of Health, and Agenzia Italiana del Farmaco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calabresi, P., Picconi, B., Tozzi, A. et al. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 17, 1022–1030 (2014). https://doi.org/10.1038/nn.3743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing