Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Behavioral and neurophysiological correlates of regret in rat decision-making on a neuroeconomic task

Abstract

Disappointment entails the recognition that one did not get the value expected. In contrast, regret entails recognition that an alternative (counterfactual) action would have produced a more valued outcome. In humans, the orbitofrontal cortex is active during expressions of regret, and humans with damage to the orbitofrontal cortex do not express regret. In rats and nonhuman primates, both the orbitofrontal cortex and the ventral striatum have been implicated in reward computations. We recorded neural ensembles from orbitofrontal cortex and ventral striatum in rats encountering wait or skip choices for delayed delivery of different flavors using an economic framework. Economically, encountering a high-cost choice after skipping a low-cost choice should induce regret. In these situations, rats looked backwards toward the lost option, cells within orbitofrontal cortex and ventral striatum represented the missed action, rats were more likely to wait for the long delay, and rats rushed through eating the food after that delay.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Restaurant Row and revealed preferences in rats.
Figure 2: Ensembles in OFC and vStr represent the current reward and the current zone.
Figure 3: Representations of expected reward as a function of delay and threshold.
Figure 4: Behavioral responses in regret-inducing and control situations.
Figure 5: Single reward cells in OFC and vStr during regret-inducing situations.
Figure 6: Neural representations in OFC and vStr represent the previous zone during behavioral regret instances.
Figure 7: Behavioral changes following potential regret instances.
Figure 8: Behavioral and neurophysiological correspondences during regret.

References

  1. 1

    Coricelli, G., Dolan, R.J. & Sirigu, A. Brain, emotion and decision making: the paradigmatic example of regret. Trends Cogn. Sci. 11, 258–265 (2007).

    Article  Google Scholar 

  2. 2

    Camille, N. et al. The involvement of the orbitofrontal cortex in the experience of regret. Science 304, 1167–1170 (2004).

    Article  CAS  Google Scholar 

  3. 3

    Gilovich, T. & Medvec, V.H. The experience of regret: what, when, and why. Psychol. Rev. 102, 379–395 (1995).

    Article  CAS  Google Scholar 

  4. 4

    Bell, D. Regret in decision making under uncertainty. Oper. Res. 30, 961–981 (1982).

    Article  Google Scholar 

  5. 5

    Landman, J. & Manis, J.D. What might have been: counterfactual thought concerning personal decisions. Br. J. Psychol. 83, 473–477 (1992).

    Article  Google Scholar 

  6. 6

    Loomes, G. & Sugden, R. Regret theory: an alternative theory of rational choice under uncertainty. Econ. J. 92, 805–824 (1982).

    Article  Google Scholar 

  7. 7

    Loomes, G. & Sugden, R. Disappointment and dynamic consistency in choice under uncertainty. Rev. Econ. Stud. 53, 271–282 (1986).

    Article  Google Scholar 

  8. 8

    Bell, D. Disappointment in decision making under uncertainty. Oper. Res. 33, 1–27 (1985).

    Article  Google Scholar 

  9. 9

    Landman, J. Regret: a theoretical and conceptual analysis. J. Theory Soc. Behav. 17, 135–160 (1987).

    Article  Google Scholar 

  10. 10

    Lee, D. Neural basis of quasi-rational decision making. Curr. Opin. Neurobiol. 16, 191–198 (2006).

    Article  CAS  Google Scholar 

  11. 11

    Coricelli, G. et al. Regret and its avoidance: a neuroimaging study of choice behavior. Nat. Neurosci. 8, 1255–1262 (2005).

    Article  CAS  Google Scholar 

  12. 12

    Schoenbaum, G., Chiba, A.A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat. Neurosci. 1, 155–159 (1998).

    Article  CAS  Google Scholar 

  13. 13

    Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Padoa-Schioppa, C. & Assad, J.A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Jones, J.L. et al. Orbitofrontal cortex supports behavior and learning using inferred but not cached values. Science 338, 953–956 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Takahashi, Y.K. et al. Neural estimates of imagined outcomes in the orbitofrontal cortex drive behavior and learning. Neuron 80, 507–518 (2013).

    Article  CAS  Google Scholar 

  17. 17

    Wilson, R.C., Takahashi, Y.K., Schoenbaum, G. & Niv, Y. Orbitofrontal cortex as a cognitive map of task space. Neuron 81, 267–279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Sul, J.H., Kim, H., Huh, N., Lee, D. & Jung, M.W. Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron 66, 449–460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Abe, H. & Lee, D. Distributed coding of actual and hypothetical outcomes in the orbital and dorsolateral prefrontal cortex. Neuron 70, 731–741 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Schoenbaum, G., Nugent, L.S., Saddoris, M.P. & Setlow, B. Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport 13, 885–890 (2002).

    Article  Google Scholar 

  21. 21

    Fellows, L.K. & Farah, M.J. Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 126, 1830–1837 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Rudebeck, P.H., Saunders, R.C., Prescott, A.T., Chau, L.S. & Murray, E.A. Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat. Neurosci. 16, 1140–1145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    McDannald, M.A., Lucantonio, F., Burke, K.A., Niv, Y. & Schoenbaum, G. Ventral striatum and orbitofrontal cortex are both required for model-based, but not model-free, reinforcement learning. J. Neurosci. 31, 2700–2705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    McDannald, M.A. et al. Model-based learning and the contribution of the orbitofrontal cortex to the model-free world. Eur. J. Neurosci. 35, 991–996 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Steiner, A.P. & Redish, A.D. The road not taken: neural correlates of decision making in orbitofrontal cortex. Front. Neurosci. 6, 131 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Cromwell, H.C. & Schultz, W. Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. J. Neurophysiol. 89, 2823–2838 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Roesch, M.R., Singh, T., Brown, P.L., Mullins, S.E. & Schoenbaum, G. Ventral striatal neurons encode the value of the chosen action in rats deciding between differently delayed or sized rewards. J. Neurosci. 29, 13365–13376 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    van der Meer, M.A. & Redish, A. Covert expectation-of-reward in rat ventral striatum at decision points. Front. Integr. Neurosci 3, 1–15 (2009).

    PubMed  PubMed Central  Google Scholar 

  30. 30

    Lavoie, A.M. & Mizumori, S.J. Spatial, movement- and reward-sensitive discharge by medial ventral striatum neurons of rats. Brain Res. 638, 157–168 (1994).

    Article  CAS  Google Scholar 

  31. 31

    Setlow, B., Schoenbaum, G. & Gallagher, M. Neural encoding in ventral striatum during olfactory discrimination learning. Neuron 38, 625–636 (2003).

    Article  CAS  Google Scholar 

  32. 32

    Takahashi, Y.K. et al. The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62, 269–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Takahashi, Y.K. et al. Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex. Nat. Neurosci. 14, 1590–1597 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Schoenbaum, G. & Eichenbaum, H. Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. J. Neurophysiol. 74, 733–750 (1995).

    Article  CAS  Google Scholar 

  35. 35

    Roitman, M.F., Wheeler, R.A. & Carelli, R.M. Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron 45, 587–597 (2005).

    Article  CAS  Google Scholar 

  36. 36

    Landman, J. Regret: The Persistence of the Possible (Oxford Univ. Press, 1993).

  37. 37

    Connolly, T. & Butler, D. Regret in economic and psychological theories of choice. J. Behav. Decis. Mak. 19, 139–154 (2006).

    Article  Google Scholar 

  38. 38

    Aronson, E. The effect of effort on the attractiveness of rewarded and unrewarded stimuli. J. Abnorm. Soc. Psychol. 63, 375–380 (1961).

    Article  CAS  Google Scholar 

  39. 39

    Arkes, H.R. & Ayton, P. The sunk cost and Concorde effects: are humans less rational than lower animals? Psychol. Bull. 125, 591 (1999).

    Article  Google Scholar 

  40. 40

    Hare, T.A., Camerer, C.F. & Rangel, A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324, 646–648 (2009).

    Article  CAS  Google Scholar 

  41. 41

    Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Bray, S., Shimojo, S. & O'Doherty, J.P. Human medial orbitofrontal cortex is recruited during experience of imagined and real rewards. J. Neurophysiol. 103, 2506–2512 (2010).

    Article  Google Scholar 

  43. 43

    Walton, M.E., Behrens, T.E., Buckley, M.J., Rudebeck, P.H. & Rushworth, M.F. Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron 65, 927–939 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Noonan, M.P. et al. Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. Proc. Natl. Acad. Sci. USA 107, 20547–20552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Rushworth, M.F., Noonan, M.P., Boorman, E.D., Walton, M.E. & Behrens, T.E. Frontal cortex and reward-guided learning and decision-making. Neuron 70, 1054–1069 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Carmichael, S.T. & Price, J.L. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 363, 615–641 (1995).

    Article  CAS  Google Scholar 

  47. 47

    Carmichael, S.T. & Price, J.L. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363, 642–664 (1995).

    Article  CAS  Google Scholar 

  48. 48

    Ongür, D. & Price, J.L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Schilman, E.A., Uylings, H.B., Galis-de Graaf, Y., Joel, D. & Groenewegen, H.J. The orbital cortex in rats topographically projects to central parts of the caudate-putamen complex. Neurosci. Lett. 432, 40–45 (2008).

    Article  CAS  Google Scholar 

  50. 50

    Mailly, P., Aliane, V., Groenewegen, H.J., Haber, S.N. & Deniau, J.M. The rat prefrontostriatal system analyzed in 3D: evidence for multiple interacting functional units. J. Neurosci. 33, 5718–5727 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Janabi-Sharifi, F., Hayward, V. & Chen, C.S.J. Discrete-time adaptive windowing for velocity estimation. IEEE Trans. Control Syst. Technol. 8, 1003–1009 (2000).

    Article  Google Scholar 

  52. 52

    Hart, W.E., Goldbaum, M., Cote, B., Kube, P. & Nelson, M.R. Measurement and classification of retinal vascular tortuosity. Int. J. Med. Inform. 53, 239–252 (1999).

    Article  CAS  Google Scholar 

  53. 53

    Zhang, K., Ginzburg, I., McNaughton, B.L. & Sejnowski, T.J. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol. 79, 1017–1044 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Boldt and K. Seeland for technical support and other members of the Redish laboratory for discussion. This work was supported by US National Institutes of Health grants T32 NS048944 (A.P.S.), T32 DA007234 (A.P.S.) and R01-DA030672 (A.D.R.).

Author information

Affiliations

Authors

Contributions

A.P.S. and A.D.R. conducted the experiments, collected the data, performed the analysis and wrote the manuscript.

Corresponding author

Correspondence to A David Redish.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17 and Supplementary Tables 1 and 2 (PDF 24838 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steiner, A., Redish, A. Behavioral and neurophysiological correlates of regret in rat decision-making on a neuroeconomic task. Nat Neurosci 17, 995–1002 (2014). https://doi.org/10.1038/nn.3740

Download citation

Further reading

Search

Quick links