Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Contributions and challenges for network models in cognitive neuroscience

Abstract

The confluence of new approaches in recording patterns of brain connectivity and quantitative analytic tools from network science has opened new avenues toward understanding the organization and function of brain networks. Descriptive network models of brain structural and functional connectivity have made several important contributions; for example, in the mapping of putative network hubs and network communities. Building on the importance of anatomical and functional interactions, network models have provided insight into the basic structures and mechanisms that enable integrative neural processes. Network models have also been instrumental in understanding the role of structural brain networks in generating spatially and temporally organized brain activity. Despite these contributions, network models are subject to limitations in methodology and interpretation, and they face many challenges as brain connectivity data sets continue to increase in detail and complexity.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Network concepts and terminology.
Figure 2: Network hubs and modules.
Figure 3: Diversity of regional activation patterns.
Figure 4: Rich-club and functional modules.
Figure 5: Network models of brain dynamics.

References

  1. Mesulam, M.M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 28, 597–613 (1990).

    CAS  PubMed  Article  Google Scholar 

  2. Bressler, S.L. & Menon, V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277–290 (2010).

    PubMed  Article  Google Scholar 

  3. McIntosh, A.R. Mapping cognition to the brain through neural interactions. Memory 7, 523–548 (1999).

    CAS  PubMed  Article  Google Scholar 

  4. McIntosh, A.R. & Mišic, B. Multivariate statistical analyses for neuroimaging data. Annu. Rev. Psychol. 64, 499–525 (2013).

    PubMed  Article  Google Scholar 

  5. Lohmann, G., Stelzer, J., Neumann, J., Ay, N. & Turner, R. “More is different” in functional magnetic resonance imaging: a review of recent data analysis techniques. Brain Connect. 3, 223–239 (2013).

    PubMed  Article  Google Scholar 

  6. Johansen-Berg, H. & Rushworth, M.F. Using diffusion imaging to study human connectional anatomy. Annu. Rev. Neurosci. 32, 75–94 (2009).

    CAS  PubMed  Article  Google Scholar 

  7. Buckner, R.L., Krienen, F.M. & Yeo, B.T. Opportunities and limitations of intrinsic functional connectivity MRI. Nat. Neurosci. 16, 832–837 (2013).

    Article  PubMed  Google Scholar 

  8. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    CAS  PubMed  Article  Google Scholar 

  9. Sporns, O. Networks of the Brain (MIT Press, 2011).

  10. Fornito, A., Zalesky, A. & Breakspear, M. Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444 (2013).

    Article  PubMed  Google Scholar 

  11. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Article  Google Scholar 

  12. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    Article  PubMed  Google Scholar 

  13. Butts, C.T. Revisiting the foundations of network analysis. Science 325, 414–416 (2009).

    CAS  PubMed  Article  Google Scholar 

  14. Wig, G.S., Schlaggar, B.L. & Petersen, S.E. Concepts and principles in the analysis of brain networks. Ann. NY Acad. Sci. 1224, 126–146 (2011).

    Article  PubMed  Google Scholar 

  15. Cohen, A.L. et al. Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41, 45–57 (2008).

    PubMed  Article  Google Scholar 

  16. Blumensath, T. et al. Spatially constrained hierarchical parcellation of the brain with resting-state fMRI. Neuroimage 76, 313–324 (2013).

    PubMed  Article  Google Scholar 

  17. Nelson, S.M. et al. A parcellation scheme for human left lateral parietal cortex. Neuron 67, 156–170 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Markov, N.T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014).

    CAS  Article  PubMed  Google Scholar 

  19. Jones, D.K., Knösche, T.R. & Turner, R. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. Neuroimage 73, 239–254 (2013).

    Article  PubMed  Google Scholar 

  20. Zalesky, A., Fornito, A. & Bullmore, E. On the use of correlation as a measure of network connectivity. Neuroimage 60, 2096–2106 (2012).

    Article  PubMed  Google Scholar 

  21. Smith, S.M. et al. Network modelling methods for FMRI. Neuroimage 54, 875–891 (2011).

    Article  PubMed  Google Scholar 

  22. Zalesky, A. et al. Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50, 970–983 (2010).

    Article  PubMed  Google Scholar 

  23. Cammoun, L. et al. Mapping the human connectome at multiple scales with diffusion spectrum MRI. J. Neurosci. Methods 203, 386–397 (2012).

    PubMed  Article  Google Scholar 

  24. Bassett, D.S., Brown, J.A., Deshpande, V., Carlson, J.M. & Grafton, S.T. Conserved and variable architecture of human white matter connectivity. Neuroimage 54, 1262–1279 (2011).

    Article  PubMed  Google Scholar 

  25. Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. Gong, G. et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb. Cortex 19, 524–536 (2009).

    PubMed  Article  Google Scholar 

  27. Nijhuis, E.H., van Walsum, A.M.V.C. & Norris, D.G. Topographic hub maps of the human structural neocortical network. PLoS ONE 8, e65511 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. van den Heuvel, M.P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    Article  PubMed  Google Scholar 

  29. Li, L. et al. Mapping putative hubs in human, chimpanzee (Pan troglodytes) and rhesus macaque (Macaca mulatta) connectomes via diffusion tractography. Neuroimage 80, 462–474 (2013).

    PubMed  Article  Google Scholar 

  30. Greicius, M.D., Krasnow, B., Reiss, A.L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 100, 253–258 (2003).

    CAS  PubMed  Article  Google Scholar 

  31. De Luca, M., Beckmann, C.F., De Stefano, N., Matthews, P.M. & Smith, S.M. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29, 1359–1367 (2006).

    CAS  PubMed  Article  Google Scholar 

  32. Yeo, B.T.T. et al. The organization of the human cerebral cortex estimated by functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  33. Power, J.D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Spreng, R.N., Sepulcre, J., Turner, G.R., Stevens, W.D. & Schacter, D.L. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J. Cogn. Neurosci. 25, 74–86 (2013).

    PubMed  Article  Google Scholar 

  35. Greicius, M.D., Supekar, K., Menon, V. & Dougherty, R.F. Resting state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2009).

    PubMed  Article  Google Scholar 

  36. van den Heuvel, M.P., Mandl, R.C., Kahn, R.S., Pol, H. & Hilleke, E. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum. Brain Mapp. 30, 3127–3141 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  37. Vincent, J.L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007).

    CAS  PubMed  Article  Google Scholar 

  38. Honey, C.J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA 106, 2035–2040 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Hermundstad, A.M. et al. Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Natl. Acad. Sci. USA 110, 6169–6174 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Rubinov, M. & Sporns, O. Weight-conserving characterization of complex functional brain networks. Neuroimage 56, 2068–2079 (2011).

    Article  PubMed  Google Scholar 

  41. Bellec, P., Rosa-Neto, P., Lyttelton, O.C., Benali, H. & Evans, A.C. Multi-level bootstrap analysis of stable clusters in resting-state fMRI. Neuroimage 51, 1126–1139 (2010).

    PubMed  Article  Google Scholar 

  42. Kelly, C. et al. A convergent functional architecture of the insula emerges across imaging modalities. Neuroimage 61, 1129–1142 (2012).

    PubMed  Article  Google Scholar 

  43. Watts, D.J. & Strogatz, S.H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).

    CAS  PubMed  Article  Google Scholar 

  44. Kaiser, M. & Hilgetag, C.C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2, e95 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    CAS  PubMed  Article  Google Scholar 

  46. Zalesky, A., Fornito, A. & Bullmore, E.T. Network-based statistic: identifying differences in brain networks. Neuroimage 53, 1197–1207 (2010).

    Article  PubMed  Google Scholar 

  47. Sporns, O. Network attributes for segregation and integration in the human brain. Curr. Opin. Neurobiol. 23, 162–171 (2013).

    CAS  PubMed  Article  Google Scholar 

  48. Passingham, R.E., Stephan, K.E. & Kötter, R. The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3, 606–616 (2002).

    CAS  Article  PubMed  Google Scholar 

  49. Wang, Q., Sporns, O. & Burkhalter, A. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J. Neurosci. 32, 4386–4399 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Markov, N.T. et al. The role of long-range connections on the specificity of the macaque interareal cortical network. Proc. Natl. Acad. Sci. USA 110, 5187–5192 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. Smith, S.M. et al. Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 106, 13040–13045 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Laird, A.R. et al. Behavioral interpretations of intrinsic connectivity networks. J. Cogn. Neurosci. 23, 4022–4037 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  53. Crossley, N.A. et al. Cognitive relevance of the community structure of the human brain functional coactivation network. Proc. Natl. Acad. Sci. USA 110, 11583–11588 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Anderson, M.L., Kinnison, J. & Pessoa, L. Describing functional diversity of brain regions and brain networks. Neuroimage 73, 50–58 (2013).

    PubMed  Article  Google Scholar 

  55. Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T. & Bullmore, E. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. USA 103, 19518–19523 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Bassett, D.S. et al. Cognitive fitness of cost-efficient brain functional networks. Proc. Natl. Acad. Sci. USA 106, 11747–11752 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Palva, S., Monto, S. & Palva, J.M. Graph properties of synchronized cortical networks during visual working memory maintenance. Neuroimage 49, 3257–3268 (2010).

    PubMed  Article  Google Scholar 

  58. Kitzbichler, M.G., Henson, R.N., Smith, M.L., Nathan, P.J. & Bullmore, E.T. Cognitive effort drives workspace configuration of human brain functional networks. J. Neurosci. 31, 8259–8270 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. de Pasquale, F. et al. Temporal dynamics of spontaneous MEG activity in brain networks. Proc. Natl. Acad. Sci. USA 107, 6040–6045 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. de Pasquale, F. et al. A cortical core for dynamic integration of functional networks in the resting human brain. Neuron 74, 753–764 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Sepulcre, J., Sabuncu, M.R., Yeo, T.B., Liu, H. & Johnson, K.A. Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain. J. Neurosci. 32, 10649–10661 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Bassett, D.S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. USA 108, 7641–7646 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Bassett, D.S. et al. Task-based core-periphery organization of human brain dynamics. PLoS Comput. Biol. 9, e1003171 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Braga, R.M., Sharp, D.J., Leeson, C., Wise, R.J. & Leech, R. Echoes of the brain within default mode, association, and heteromodal cortices. J. Neurosci. 33, 14031–14039 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. van den Heuvel, M.P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Harriger, L., van den Heuvel, M.P. & Sporns, O. Rich club organization of macaque cerebral cortex and its role in network communication. PLoS ONE 7, e46497 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. van den Heuvel, M.P. & Sporns, O. An anatomical substrate for integration among functional networks in human cortex. J. Neurosci. 33, 14489–14500 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Zamora-López, G., Zhou, C. & Kurths, J. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front. Neuroinform. 4, 1 (2010).

    PubMed  PubMed Central  Google Scholar 

  69. Shen, K. et al. Information processing architecture of functionally defined clusters in the macaque cortex. J. Neurosci. 32, 17465–17476 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Adachi, Y. et al. Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. Cereb. Cortex 22, 1586–1592 (2012).

    PubMed  Article  Google Scholar 

  71. van den Heuvel, M., Mandl, R., Luigjes, J. & Pol, H.H. Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J. Neurosci. 28, 10844–10851 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Johnston, J.M. et al. Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum. J. Neurosci. 28, 6453–6458 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. O'Reilly, J.X. et al. Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys. Proc. Natl. Acad. Sci. USA 110, 13982–13987 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Wang, Z. et al. The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex. Neuron 78, 1116–1126 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Pernice, V., Staude, B., Cardanobile, S. & Rotter, S. How structure determines correlations in neuronal networks. PLoS Comput. Biol. 7, e1002059 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Honey, C.J., Kötter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. USA 104, 10240–10245 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Deco, G., Jirsa, V.K. & McIntosh, A.R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011).

    CAS  PubMed  Article  Google Scholar 

  78. Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L. & Sporns, O. Modeling the impact of lesions in the human brain. PLoS Comput. Biol. 5, e1000408 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. de Haan, W., Mott, K., van Straaten, E.C., Scheltens, P. & Stam, C.J. Activity dependent degeneration explains hub vulnerability in Alzheimer's disease. PLoS Comput. Biol. 8, e1002582 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Vértes, P.E. et al. Simple models of human brain functional networks. Proc. Natl. Acad. Sci. USA 109, 5868–5873 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  81. Betzel, R.F. et al. Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity. Netw. Sci. 1, 353–373 (2013).

    Article  Google Scholar 

  82. Goñi, J. et al. Resting-brain functional connectivity predicted by analytic measures of network communication. Proc. Natl. Acad. Sci. USA 111, 833–838 (2014).

    Article  PubMed  CAS  Google Scholar 

  83. Hutchison, R.M., Womelsdorf, T., Gati, J.S., Everling, S. & Menon, R.S. Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum. Brain Mapp. 34, 2154–2177 (2013).

    PubMed  Article  Google Scholar 

  84. Friston, K.J. Functional and effective connectivity: a review. Brain Connect. 1, 13–36 (2011).

    PubMed  Article  Google Scholar 

  85. Valdes-Sosa, P.A., Roebroeck, A., Daunizeau, J. & Friston, K. Effective connectivity: influence, causality and biophysical modeling. Neuroimage 58, 339–361 (2011).

    PubMed  Article  Google Scholar 

  86. Seghier, M.L. & Friston, K.J. Network discovery with large DCMs. Neuroimage 68, 181–191 (2013).

    PubMed  Article  Google Scholar 

  87. Fortunato, S. & Barthelemy, M. Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007).

    CAS  PubMed  Article  Google Scholar 

  88. Schaub, M.T., Delvenne, J.C., Yaliraki, S.N. & Barahona, M. Markov dynamics as a zooming lens for multiscale community detection: non clique-like communities and the field-of-view limit. PLoS ONE 7, e32210 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Power, J.D., Schlaggar, B.L., Lessov-Schlaggar, C.N. & Petersen, S.E. Evidence for hubs in human functional brain networks. Neuron 79, 798–813 (2013).

    CAS  Article  PubMed  Google Scholar 

  90. Crofts, J.J. et al. Network analysis detects changes in the contralesional hemisphere following stroke. Neuroimage 54, 161–169 (2011).

    CAS  PubMed  Article  Google Scholar 

  91. Doron, K.W., Bassett, D.S. & Gazzaniga, M.S. Dynamic network structure of interhemispheric coordination. Proc. Natl. Acad. Sci. USA 109, 18661–18668 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Fornito, A., Harrison, B.J., Zalesky, A. & Simons, J.S. Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proc. Natl. Acad. Sci. USA 109, 12788–12793 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. Tomasi, D., Wang, R., Wang, G.J. & Volkow, N.D. Functional connectivity and brain activation: a synergistic approach. Cereb. Cortex 10.1093/cercor/bht119 (3 May 2013).

  94. Cole, M.W., Yarkoni, T., Repovš, G., Anticevic, A. & Braver, T.S. Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J. Neurosci. 32, 8988–8999 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Cole, M.W. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 16, 1348–1355 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Kaiser, M., Hilgetag, C.C. & Van Ooyen, A. A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions. Cereb. Cortex 19, 3001–3010 (2009).

    Article  PubMed  Google Scholar 

  97. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A. & Onnela, J.P. Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010).

    CAS  Article  PubMed  Google Scholar 

  98. Holme, P. & Saramäki, J. Temporal networks. Phys. Rep. 519, 97–125 (2012).

    Article  Google Scholar 

  99. Bassett, D.S. et al. Robust detection of dynamic community structure in networks. Chaos 23, 013142 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  100. Cabral, J., Hugues, E., Sporns, O. & Deco, G. Role of local network oscillations in resting-state functional connectivity. Neuroimage 57, 130–139 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author's work was supported by the J.S. McDonnell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Sporns.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sporns, O. Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci 17, 652–660 (2014). https://doi.org/10.1038/nn.3690

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3690

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing