Neuroscience and education: prime time to build the bridge

Abstract

As neuroscience gains social traction and entices media attention, the notion that education has much to benefit from brain research becomes increasingly popular. However, it has been argued that the fundamental bridge toward education is cognitive psychology, not neuroscience. We discuss four specific cases in which neuroscience synergizes with other disciplines to serve education, ranging from very general physiological aspects of human learning such as nutrition, exercise and sleep, to brain architectures that shape the way we acquire language and reading, and neuroscience tools that increasingly allow the early detection of cognitive deficits, especially in preverbal infants. Neuroscience methods, tools and theoretical frameworks have broadened our understanding of the mind in a way that is highly relevant to educational practice. Although the bridge's cement is still fresh, we argue why it is prime time to march over it.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Bruer, J.T. Education and the Brain: A bridge too far. Educ. Res. 26, 4–16 (1997).

    Article  Google Scholar 

  2. 2

    Arsalidou, M. & Taylor, M.J. Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage 54, 2382–2393 (2011).

    Article  Google Scholar 

  3. 3

    Stokes, D.E. Pasteur's Quadrant: Basic Science and Technological Innovation (Brookings Institution Press, 1997).

  4. 4

    Korol, D.L. & Gold, P.E. Glucose, memory, and aging. Am. J. Clin. Nutr. 67, 764S–771S (1998).

    CAS  Article  Google Scholar 

  5. 5

    Hackman, D.A., Farah, M.J. & Meaney, M.J. Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat. Rev. Neurosci. 11, 651–659 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Valladolid-Acebes, I. et al. High-fat diets induce changes in hippocampal glutamate metabolism and neurotransmission. Am. J. Physiol. Endocrinol. Metab. 302, E396–E402 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Grantham-McGregor, S. Can the provision of breakfast benefit school performance? Food Nutr. Bull. 26, S144–S158 (2005).

    Article  Google Scholar 

  8. 8

    Renfu, L. et al. Nutrition and educational performance in rural China's elementary schools: results of a randomized control trial in Shaanxi Province. Econ. Dev. Cult. Change 60, 735–772 (2012).

    Article  Google Scholar 

  9. 9

    Erickson, K.I. et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 108, 3017–3022 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Van der Borght, K. et al. Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus 19, 928–936 (2009).

    Article  Google Scholar 

  11. 11

    Perry, B.D. Childhood experience and the expression of genetic potential: What childhood neglect tells us about nature and nurture. Brain Mind 3, 79–100 (2002).

    Article  Google Scholar 

  12. 12

    Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Wilhelm, I., Diekelmann, S. & Born, J. Sleep in children improves memory performance on declarative but not procedural tasks. Learn. Mem. 15, 373–377 (2008).

    Article  Google Scholar 

  14. 14

    Stickgold, R., James, L. & Hobson, J.A. Visual discrimination learning requires sleep after training. Nat. Neurosci. 3, 1237–1238 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Wagner, U., Gais, S., Haider, H., Verleger, R. & Born, J. Sleep inspires insight. Nature 427, 352–355 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Wilhelm, I. et al. Sleep selectively enhances memory expected to be of future relevance. J. Neurosci. 31, 1563–1569 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Huber, R., Ghilardi, M.F., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 78–81 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Kurdziel, L., Duclos, K. & Spencer, R.M.C. Sleep spindles in midday naps enhance learning in preschool children. Proc. Natl. Acad. Sci. USA 110, 17267–17272 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Marshall, L., Helgadóttir, H., Mölle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Wilson, M. & McNaughton, B. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    CAS  Article  Google Scholar 

  21. 21

    Ribeiro, S. et al. Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye-movement sleep. J. Neurosci. 22, 10914–10923 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Vecsey, C.G. et al. Sleep deprivation impairs cAMP signaling in the hippocampus. Nature 461, 1122–1125 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Hagenauer, M.H., Perryman, J.I., Lee, T.M. & Carskadon, M.a. Adolescent changes in the homeostatic and circadian regulation of sleep. Dev. Neurosci. 31, 276–284 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Hansen, M., Janssen, I., Schiff, A., Zee, P.C. & Dubocovich, M.L. The impact of school daily schedule on adolescent sleep. Pediatrics 115, 1555–1561 (2005).

    Article  Google Scholar 

  25. 25

    Owens, J.A., Belon, K. & Moss, P. Impact of delaying school start time on adolescent sleep, mood, and behavior. Arch. Pediatr. Adolesc. Med. 164, 608–614 (2010).

    Article  Google Scholar 

  26. 26

    Mednick, S., Nakayama, K. & Stickgold, R. Sleep-dependent learning: a nap is as good as a night. Nat. Neurosci. 6, 697–698 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Melhuish, E.C., Sylva, K. & Sammons, P. Preschool influences on mathematics achievement. Science 321, 1161–1162 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Farah, M.J. et al. Environmental stimulation, parental nurturance and cognitive development in humans. Dev. Sci. 11, 793–801 (2008).

    Article  Google Scholar 

  29. 29

    Fisher, K., Hirsh-pasek, K., Golinkoff, R.M., Singer, D.G. & Berk, L. Playing around in school: implications for learning and educational policy in Oxford Handb. Dev. Play (Pellegrini, A.) 341–362 (Oxford University Press, 2011).

  30. 30

    Rothbart, M.K. & Jones, L.B. Temperament, self-regulation and education. School Psych. Rev. 27, 479–491 (1998).

    Google Scholar 

  31. 31

    Korver, A.M.H. et al. Newborn hearing screening vs later hearing screening and developmental outcomes in children with permanent childhood hearing impairment. J. Am. Med. Assoc. 304, 1701–1708 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Mehl, A.L. & Thomson, V. Newborn hearing screening: the great omission. Pediatrics 101, e4 (1998).

    CAS  Article  Google Scholar 

  33. 33

    Francis, H.W. & Niparko, J.K. Cochlear implantation update. Pediatr. Clin. North Am. 50, 341–361 (2003).

    Article  Google Scholar 

  34. 34

    Semenov, Y.R., Martinez-Monedero, R. & Niparko, J.K. Cochlear implants: clinical and societal outcomes. Otolaryngol. Clin. North Am. 45, 959–981 (2012).

    Article  Google Scholar 

  35. 35

    Connor, C.M., Craig, H.K., Raudenbush, S.W., Heavner, K. & Zwolan, T.A. The age at which young deaf children receive cochlear implants and their vocabulary and speech-production growth: is there an added value for early implantation? Ear Hear. 27, 628–644 (2006).

    Article  Google Scholar 

  36. 36

    Connor, C.M. & Zwolan, T.A. Examining multiple sources of influence on the reading comprehension skills of children who use cochlear implants. J. Speech Lang. Hear. Res. 47, 509–526 (2004).

    Article  Google Scholar 

  37. 37

    Carey, S. The Origin of Concepts (Oxford University Press, 2009).

  38. 38

    Evers, K. & Sigman, M. Possibilities and limits of mind-reading: a neurophilosophical perspective. Conscious. Cogn. 22, 887–897 (2013).

    Article  Google Scholar 

  39. 39

    Peña, M. et al. Sounds and silence: an optical topography study of language recognition at birth. Proc. Natl. Acad. Sci. USA 100, 11702–11705 (2003).

    Article  Google Scholar 

  40. 40

    Dehaene-Lambertz, G. et al. Functional organization of perisylvian activation during presentation of sentences in preverbal infants. Proc. Natl. Acad. Sci. USA 103, 14240–14245 (2006).

    CAS  Article  Google Scholar 

  41. 41

    Petersen, S.E. & Posner, M.I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89 (2012).

    CAS  Article  Google Scholar 

  42. 42

    Davidson, M.C., Amso, D., Anderson, L.C. & Diamond, A. Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition and task switching. Neuropsychologia 44, 2037–2078 (2006).

    Article  Google Scholar 

  43. 43

    Atance, C.M. & O'Neill, D.K. Episodic future thinking. Trends Cogn. Sci. 5, 533–539 (2001).

    Article  Google Scholar 

  44. 44

    Medin, D., Bennis, W. & Chandler, M. Culture and the home-field disadvantage. Perspect. Psychol. Sci. 5, 708–713 (2010).

    Article  Google Scholar 

  45. 45

    Akhtar, N. & Menjivar, J.A. Cognitive and linguistic correlates of early exposure to more than one language. Adv. Child Dev. Behav. 42, 41–78 (2012).

    Article  Google Scholar 

  46. 46

    UNESCO. Education in a multilingual world. 〈http://unesdoc.unesco.org/images/0012/001297/129728e.pdf〉. (2003).

  47. 47

    Bialystok, E. Bilingualism: The good, the bad, and the indifferent. Biling. Lang. Cogn. 12, 3–11 (2009).

    Article  Google Scholar 

  48. 48

    Werker, J.F. & Byers-Heinlein, K. Bilingualism in infancy: first steps in perception and comprehension. Trends Cogn. Sci. 12, 144–151 (2008).

    Article  Google Scholar 

  49. 49

    Kovács, A.M. & Mehler, J. Cognitive gains in 7-month-old bilingual infants. Proc. Natl. Acad. Sci. USA 106, 6556–6560 (2009).

    Article  Google Scholar 

  50. 50

    Bialystok, E., Luk, G., Peets, K.F. & Yang, S. Receptive vocabulary differences in monolingual and bilingual children. Lang. Cogn. 13, 525–531 (2010).

    Article  Google Scholar 

  51. 51

    Ivanova, I. & Costa, A. Does bilingualism hamper lexical access in speech production? Acta Psychol. (Amst.) 127, 277–288 (2008).

    Article  Google Scholar 

  52. 52

    Garbin, G. et al. Bridging language and attention: brain basis of the impact of bilingualism on cognitive control. Neuroimage 53, 1272–1278 (2010).

    CAS  Article  Google Scholar 

  53. 53

    Abutalebi, J. et al. Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cereb. Cortex 22, 2076–2086 (2012).

    Article  Google Scholar 

  54. 54

    Posner, M.I., Rothbart, M.K., Sheese, B.E. & Tang, Y. The anterior cingulate gyrus and the mechanism of self-regulation. Cogn. Affect. Behav. Neurosci. 7, 391–395 (2007).

    Article  Google Scholar 

  55. 55

    Bialystok, E., Craik, F.I.M. & Freedman, M. Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia 45, 459–464 (2007).

    Article  Google Scholar 

  56. 56

    Luk, G., Bialystok, E., Craik, F.I.M. & Grady, C.L. Lifelong bilingualism maintains white matter integrity in older adults. J. Neurosci. 31, 16808–16813 (2011).

    CAS  Article  Google Scholar 

  57. 57

    Mischel, W. et al. “Willpower” over the life span: decomposing self-regulation. Soc. Cogn. Affect. Neurosci. 6, 252–256 (2011).

    Article  Google Scholar 

  58. 58

    Hoff, E. Interpreting the early language trajectories of children from low-SES and language minority homes: Implications for closing achievement gaps. Dev. Psychol. 49, 4–14 (2013).

    Article  Google Scholar 

  59. 59

    Dehaene, S. & Cohen, L. Cultural recycling of cortical maps. Neuron 56, 384–398 (2007).

    CAS  Article  Google Scholar 

  60. 60

    Jay Gould, S. & Vrba, E. Exaptation-a missing term in the science of form. Paleobiology 8, 4–15 (1982).

    Article  Google Scholar 

  61. 61

    Wiesel, T.N. & Hubel, D.H. Extent of recovery from the effects of visual deprivation in kittens. J. Neurophysiol. 28, 1060–1072 (1965).

    CAS  Article  Google Scholar 

  62. 62

    Gilbert, C.D., Sigman, M. & Crist, R.E. The neural basis of perceptual learning. Neuron 31, 681–697 (2001).

    CAS  Article  Google Scholar 

  63. 63

    Carreiras, M. et al. An anatomical signature for literacy. Nature 461, 983–986 (2009).

    CAS  Article  Google Scholar 

  64. 64

    Dehaene, S., Cohen, L., Sigman, M. & Vinckier, F. The neural code for written words: a proposal. Trends Cogn. Sci. 9, 335–341 (2005).

    Article  Google Scholar 

  65. 65

    Rayner, K. Eye movements in reading and information processing: 20 years of research. Psychol. Bull. 124, 372–422 (1998).

    CAS  Article  Google Scholar 

  66. 66

    Biemiller, A. Relationships between oral reading rates for letters, words, and simple text in the development of reading achievement. Read. Res. Q. 13, 223–253 (1977).

    Article  Google Scholar 

  67. 67

    Reicher, G.M. Perceptual recognition as a function of meaninfulness of stimulus material. J. Exp. Psychol. 81, 275–280 (1969).

    CAS  Article  Google Scholar 

  68. 68

    Dehaene, S. Reading in the Brain: the New Science of How We Read (Penguin books, 2009).

  69. 69

    Ullman, S. Object recognition and segmentation by a fragment-based hierarchy. Trends Cogn. Sci. 11, 58–64 (2007).

    Article  Google Scholar 

  70. 70

    Vinckier, F. et al. Hierarchical coding of letter strings in the ventral stream: dissecting the inner organization of the visual word-form system. Neuron 55, 143–156 (2007).

    CAS  Article  Google Scholar 

  71. 71

    Zorzi, M. et al. Extra-large letter spacing improves reading in dyslexia. Proc. Natl. Acad. Sci. USA 109, 11455–11459 (2012).

    CAS  Article  Google Scholar 

  72. 72

    Martelli, M. & Di Filippo, G. Crowding, reading, and developmental dyslexia. J. Vis. 9, 1–18 (2009).

    Article  Google Scholar 

  73. 73

    Goswami, U. The development of reading across languages. Ann. NY Acad. Sci. 1145, 1–12 (2008).

    Article  Google Scholar 

  74. 74

    Temple, E. et al. Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proc. Natl. Acad. Sci. USA 100, 2860–2865 (2003).

    CAS  Article  Google Scholar 

  75. 75

    Gabrieli, J.D.E. Dyslexia: a new synergy between education and cognitive neuroscience. Science 325, 280–283 (2009).

    CAS  Article  Google Scholar 

  76. 76

    Guttorm, T.K., Leppanen, P.H.T., Richardson, U. & Lyytinen, H. Event-related potentials and consonant differentiation in newborns with familial risk for dyslexia. J. Learn. Disabil. 34, 534–544 (2001).

    CAS  Article  Google Scholar 

  77. 77

    Guttorm, T.K., Leppänen, P.H.T., Hämäläinen, J.A., Eklund, K.M. & Lyytinen, H.J. Newborn event-related potentials predict poorer pre-reading skills in children at risk for dyslexia. J. Learn. Disabil. 43, 391–401 (2010).

    Article  Google Scholar 

  78. 78

    Leppänen, P.H. et al. Newborn brain event-related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia. Cortex 46, 1362–1376 (2010).

    Article  Google Scholar 

  79. 79

    Molfese, D.L. Predicting dyslexia at 8 years of age using neonatal brain responses. Brain Lang. 72, 238–245 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the faculty and students of the Latin American School for Education, Cognitive and Neural Sciences (LA School) for kindling the ideas presented here, the James S. McDonnell Foundation for supporting the LA School, D. Koshiyama for librarian support, G. Gellon for reading and commenting the manuscript, and D. Klahr for inspiring the notion that educational neuroscience lies in Pasteur's Quadrant. S.R. is funded by grant 14385 (ACERTA), 049/2012/CAPES/INEP – Programa Observatório da Educação. M.S. and A.P.G. are funded by CONICET and UBACYT. M.S. is sponsored by a scholar award of the James McDonnell Foundation. M.P. is sponsored by CONICYT Chile, Fondecyt # 1110928 and IDeA CA12I10372.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mariano Sigman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sigman, M., Peña, M., Goldin, A. et al. Neuroscience and education: prime time to build the bridge. Nat Neurosci 17, 497–502 (2014). https://doi.org/10.1038/nn.3672

Download citation

Further reading