Abstract
Working memory is widely considered to be limited in capacity, holding a fixed, small number of items, such as Miller's 'magical number' seven or Cowan's four. It has recently been proposed that working memory might better be conceptualized as a limited resource that is distributed flexibly among all items to be maintained in memory. According to this view, the quality rather than the quantity of working memory representations determines performance. Here we consider behavioral and emerging neural evidence for this proposal.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Baddeley, A. Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4, 829–839 (2003).
Fuster, J.M. Memory in the Cerebral Cortex: An Empirical Approach to Neural Networks in the Human and Nonhuman Primate (MIT Press, 1999).
Miller, G.A. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956).
Cowan, N. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87–114 (2001).
Luck, S.J. & Vogel, E.K. The capacity of visual working memory for features and conjunctions. Nature 390, 279–281 (1997).
Pashler, H. Familiarity and visual change detection. Percept. Psychophys. 44, 369–378 (1988).
Luck, S.J. & Vogel, E.K. Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 17, 391–400 (2013).
Wilken, P. & Ma, W.J. A detection theory account of change detection. J. Vis. 4, 1120–1135 (2004).
Bays, P.M., Catalao, R.F.G. & Husain, M. The precision of visual working memory is set by allocation of a shared resource. J. Vis. 9, 7 (2009).
Gorgoraptis, N., Catalao, R.F., Bays, P.M. & Husain, M. Dynamic updating of working memory resources for visual objects. J. Neurosci. 31, 8502 (2011).
Bays, P.M. & Husain, M. Dynamic shifts of limited working memory resources in human vision. Science 321, 851–854 (2008).
Alvarez, G.A. & Cavanagh, P. The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychol. Sci. 15, 106–111 (2004).
Keshvari, S., van den Berg, R. & Ma, W.J. No evidence for an item limit in change detection. PLoS Comput. Biol. 9, e1002927 (2013).
Franconeri, S.L., Alvarez, G.A. & Cavanagh, P. Flexible cognitive resources: competitive content maps for attention and memory. Trends Cogn. Sci. 17, 134–141 (2013).
van den Berg, R., Shin, H., Chou, W.-C., George, R. & Ma, W.J. Variability in encoding precision accounts for visual short-term memory limitations. Proc. Natl. Acad. Sci. USA 109, 8780–8785 (2012).
Fougnie, D., Suchow, J.W. & Alvarez, G.A. Variability in the quality of visual working memory. Nat. Commun. 3, 1229 (2012).
Palmer, J. Attentional limits on the perception and memory of visual information. J. Exp. Psychol. Hum. Percept. Perform. 16, 332–350 (1990).
Zokaei, N., Gorgoraptis, N., Bahrami, B., Bays, P.M. & Husain, M. Precision of working memory for visual motion sequences and transparent motion surfaces. J. Vis. 11, 2 (2011).
Zhang, W. & Luck, S.J. Discrete fixed-resolution representations in visual working memory. Nature 453, 233–235 (2008).
Rademaker, R.L., Tredway, C.H. & Tong, F. Introspective judgments predict the precision and likelihood of successful maintenance of visual working memory. J. Vis. 12, 21 (2012).
Anderson, D.E., Vogel, E.K. & Awh, E. Precision in visual working memory reaches a stable plateau when individual item limits are exceeded. J. Neurosci. 31, 1128–1138 (2011).
Buschman, T.J., Siegel, M., Roy, J.E. & Miller, E.K. Neural substrates of cognitive capacity limitations. Proc. Natl. Acad. Sci. USA 108, 11252–11255 (2011).
Elmore, L.C. et al. Visual short-term memory compared in rhesus monkeys and humans. Curr. Biol. 21, 975–979 (2011).
Heyselaar, E., Johnston, K. & Paré, M. A change detection approach to study visual working memory of the macaque monkey. J. Vis. 11, 11 (2011).
Lara, A.H. & Wallis, J.D. Capacity and precision in an animal model of visual short-term memory. J. Vis. 12, 13 (2012).
Bays, P.M., Gorgoraptis, N., Wee, N., Marshall, L. & Husain, M. Temporal dynamics of encoding, storage, and reallocation of visual working memory. J. Vis. 11, 6 (2011).
Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).
Pertzov, Y., Bays, P.M., Joseph, S. & Husain, M. Rapid forgetting prevented by retrospective attention cues. J. Exp. Psychol. Hum. Percept. Perform. 39, 1224–1231 (2013).
Melcher, D. & Piazza, M. The role of attentional priority and saliency in determining capacity limits in enumeration and visual working memory. PLoS ONE 6, e29296 (2011).
Shao, N. et al. Saccades elicit obligatory allocation of visual working memory. Mem. Cognit. 38, 629–640 (2010).
Bisley, J.W. & Goldberg, M.E. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33, 1–21 (2010).
Klein, R.M. Inhibition of return. Trends Cogn. Sci. 4, 138–147 (2000).
Shibuya, H. & Bundesen, C. Visual selection from multielement displays: measuring and modeling effects of exposure duration. J. Exp. Psychol. Hum. Percept. Perform. 14, 591–600 (1988).
Mazyar, H., van den Berg, R. & Ma, W.J. Does precision decrease with set size? J. Vis. 12, 10 (2012).
Emrich, S.M. & Ferber, S. Competition increases binding errors in visual working memory. J. Vis. 12, 12 (2012).
Bundesen, C., Habekost, T. & Kyllingsbæk, S. A neural theory of visual attention: bridging cognition and neurophysiology. Psychol. Rev. 112, 291–328 (2005).
Xu, Y. & Chun, M.M. Dissociable neural mechanisms supporting visual short-term memory for objects. Nature 440, 91–95 (2006).
Todd, J.J. & Marois, R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428, 751–754 (2004).
Linden, D.E.J. et al. Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. Neuroimage 20, 1518–1530 (2003).
Vogel, E.K. & Machizawa, M.G. Neural activity predicts individual differences in visual working memory capacity. Nature 428, 748–751 (2004).
Leung, H.C., Seelig, D. & Gore, J.C. The effect of memory load on cortical activity in the spatial working memory circuit. Cogn. Affect. Behav. Neurosci. 4, 553–563 (2004).
van Dijk, H., van der Werf, J., Mazaheri, A., Medendorp, W.P. & Jensen, O. Modulations in oscillatory activity with amplitude asymmetry can produce cognitively relevant event-related responses. Proc. Natl. Acad. Sci. USA 107, 900–905 (2010).
Todd, J.J. & Marois, R. Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity. Cogn. Affect. Behav. Neurosci. 5, 144–155 (2005).
Luria, R., Sessa, P., Gotler, A., Jolicøeur, P. & Dell'Acqua, R. Visual short-term memory capacity for simple and complex objects. J. Cogn. Neurosci. 22, 496–512 (2010).
Machizawa, M.G., Goh, C.C.W. & Driver, J. Human visual short-term memory precision can be varied at will when the number of retained items is low. Psychol. Sci. 23, 554–559 (2012).
Reinhart, R.M.G. et al. Homologous mechanisms of visuospatial working memory maintenance in macaque and human: properties and sources. J. Neurosci. 32, 7711–7722 (2012).
Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).
Wheeler, M.E. & Treisman, A.M. Binding in short-term visual memory. J. Exp. Psychol. Gen. 131, 48–64 (2002).
Bays, P.M., Wu, E.Y. & Husain, M. Storage and binding of object features in visual working memory. Neuropsychologia 49, 1622–1631 (2011).
Umemoto, A., Drew, T., Ester, E.F. & Awh, E. A bilateral advantage for storage in visual working memory. Cognition 117, 69–79 (2010).
Riggall, A.C. & Postle, B.R. The relationship between working memory storage and elevated activity as measured with functional magnetic resonance imaging. J. Neurosci. 32, 12990–12998 (2012).
Harrison, S.A. & Tong, F. Decoding reveals the contents of visual working memory in early visual areas. Nature 458, 632–635 (2009).
Serences, J.T., Ester, E.F., Vogel, E.K. & Awh, E. Stimulus-specific delay activity in human primary visual cortex. Psychol. Sci. 20, 207–214 (2009).
Ester, E.F., Anderson, D.E., Serences, J.T. & Awh, E. A neural measure of precision in visual working memory. J. Cogn. Neurosci. 25, 754–761 (2013).
Emrich, S.M., Riggall, A.C., Larocque, J.J. & Postle, B.R. Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory. J. Neurosci. 33, 6516–6523 (2013).
Freeman, J., Brouwer, G.J., Heeger, D.J. & Merriam, E.P. Orientation decoding depends on maps, not columns. J. Neurosci. 31, 4792–4804 (2011).
Lewis-Peacock, J.A., Drysdale, A.T., Oberauer, K. & Postle, B.R. Neural evidence for a distinction between short-term memory and the focus of attention. J. Cogn. Neurosci. 24, 61–79 (2012).
Lisman, J.E. & Idiart, M. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995).
Raffone, A. & Wolters, G. A cortical mechanism for binding in visual working memory. J. Cogn. Neurosci. 13, 766–785 (2001).
Ma, W.J. & Huang, W. No capacity limit in attentional tracking: Evidence for probabilistic inference under a resource constraint. J. Vis. 9, 1–30 (2009).
Shafi, M. et al. Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience 146, 1082–1108 (2007).
Seung, H.S. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA 90, 10749–10753 (1993).
Ma, W.J., Beck, J.M., Latham, P.E. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).
Awh, E. & Jonides, J. Overlapping mechanisms of attention and spatial working memory. Trends Cogn. Sci. 5, 119–126 (2001).
McAdams, C.J. & Maunsell, J.H.R. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).
Churchland, A.K., Kiani, R. & Shadlen, M.N. Decision-making with multiple alternatives. Nat. Neurosci. 11, 693–702 (2008).
Churchland, A.K. et al. Variance as a signature of neural computations during decision making. Neuron 69, 818–831 (2011).
Wei, Z., Wang, X.J. & Wang, D.H. From distributed resources to limited slots in multiple-item working memory: a spiking network model with normalization. J. Neurosci. 32, 11228–11240 (2012).
van den Berg, R. & Ma, W.J. 'Plateau'-related summary statistics are uninformative for comparing working memory models. Atten. Percept. Psychophys. (in the press).
van den Berg, R., Awh, E. & Ma, W.J. Factorial comparison of working memory models. Psychol. Rev. (in the press).
Girshick, A.R., Landy, M.S. & Simoncelli, E.P. Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nat. Neurosci. 14, 926–932 (2011).
Brady, T.F. & Tenenbaum, J.B. A probabilistic model of visual working memory: incorporating higher order regularities into working memory capacity estimates. Psychol. Rev. 120, 85–109 (2013).
Bays, P.M. Noise in neural populations accounts for errors in visual working memory. J. Neurosci. (in the press).
Fougnie, D., Asplund, C.L. & Marois, R. What are the units of storage in visual working memory? J. Vis. 10, 27 (2010).
Parra, M.A. et al. Short-term memory binding deficits in Alzheimer's disease. Brain 132, 1057–1066 (2009).
Brockmole, J.R. & Logie, R.H. Age-related change in visual working memory: a study of 55,753 participants aged 8–75. Front. Psychol. 4, 12 (2013).
Peich, M.-C., Husain, M. & Bays, P.M. Age-related decline of precision and binding in visual working memory. Psychol. Aging 28, 729–743 (2013).
Pertzov, Y. et al. Binding deficits in memory following medial temporal lobe damage in patients with voltage-gated potassium channel complex antibody-associated limbic encephalitis. Brain 136, 2474–2485 (2013).
Eng, H.Y., Chen, D. & Jiang, Y. Visual working memory for simple and complex visual stimuli. Psychon. Bull. Rev. 12, 1127–1133 (2005).
Keshvari, S., van den Berg, R. & Ma, W.J. Probabilistic computation in human perception under variability in encoding precision. PLoS ONE 7, e40216 (2012).
Palmer, J., Verghese, P. & Pavel, M. The psychophysics of visual search. Vision Res. 40, 1227–1268 (2000).
Ma, W.J., Navalpakkam, V., Beck, J.M., Van den Berg, R. & Pouget, A. Behavior and neural basis of near-optimal visual search. Nat. Neurosci. 14, 783–790 (2011).
Awh, E., Barton, B. & Vogel, E.K. Visual working memory represents a fixed number of items regardless of complexity. Psychol. Sci. 18, 622–628 (2007).
Rouder, J.N., Morey, R., Cowan, N., Morey, C. & Pratte, M. An assessment of fixed-capacity models of visual working memory. Proc. Natl. Acad. Sci. USA 105, 5975–5979 (2008).
Brady, T.F. & Alvarez, G.A. Hierarchical encoding in visual working memory: ensemble statistics bias memory for individual items. Psychol. Sci. 22, 384–392 (2011).
Orhan, A.E. & Jacobs, R.A. A Probabilistic clustering theory of the organization of visual short-term memory. Psychol. Rev. 120, 297–328 (2013).
Dyrholm, M., Kyllingsbaek, S., Espeseth, T. & Bundesen, C. Generalizing parametric models by introducing trial-by-trial parameter variability: The case of TVA. J. Math. Psychol. 55, 416–429 (2011).
Sims, C.R., Jacobs, R.A. & Knill, D.C. An ideal-observer analysis of visual working memory. Psychol. Rev. 119, 807–830 (2012).
Olson, I.R. & Jiang, Y. Is visual short-term memory object based? Rejection of the 'strong-object' hypothesis. Percept. Psychophys. 64, 1055–1067 (2002).
Xu, Y. Limitations of object-based feature encoding in visual short-term memory. J. Exp. Psychol. Hum. Percept. Perform. 28, 458–468 (2002).
Fougnie, D. & Alvarez, G.A. Object features fail independently in visual working memory: evidence for a probabilistic feature-store model. J. Vis. 11, 3 (2011).
Fougnie, D., Cormiea, S.M. & Alvarez, G.A. Object-based benefits without object-based representations. J. Exp. Psychol. Gen. 142, 621–626 (2013).
Marshall, L. & Bays, P.M. Obligatory encoding of task-irrelevant features depletes working memory resources. J. Vis. 13, 21 (2013).
Brady, T.F., Konkle, T., Gill, J., Oliva, A. & Alvarez, G.A. Visual long-term memory has the same limit on fidelity as visual working memory. Psychol. Sci. 24, 981–990 (2013).
Kumar, S. et al. Resource allocation and prioritization in auditory working memory. Cogn. Neurosci. 4, 12–20 (2013).
Vul, E., Frank, M.C., Alvarez, G.A. & Tenenbaum, J.B. Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model. Adv. Neural Inf. Process. Syst. 22, 1955–1963 (2009).
Holcombe, A.O. & Chen, W.-Y. Exhausting attentional tracking resources with a single fast-moving object. Cognition 123, 218–228 (2012).
Chesney, D.L. & Haladjian, H.H. Evidence for a shared mechanism used in multiple-object tracking and subitizing. Atten. Percept. Psychophys. 73, 2457–2480 (2011).
Burnett Heyes, S., Zokaei, N., van der Staaij, I., Bays, P.M. & Husain, M. Development of visual working memory precision in childhood. Dev. Sci. 15, 528–539 (2012).
Noack, H., Lövdén, M. & Lindenberger, U. Normal aging increases discriminal dispersion in visuospatial short-term memory. Psychol. Aging 27, 627–637 (2012).
Acknowledgements
We thank R. van den Berg for useful discussions and assistance with Figure 5. W.J.M. is supported by award number R01EY020958 from the National Eye Institute and award number W911NF-12-1-0262 from the Army Research Office. P.M.B. and M.H. are supported by the Wellcome Trust.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Ma, W., Husain, M. & Bays, P. Changing concepts of working memory. Nat Neurosci 17, 347–356 (2014). https://doi.org/10.1038/nn.3655
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn.3655
This article is cited by
-
Scaling models of visual working memory to natural images
Communications Psychology (2024)
-
The voluntary utilization of visual working memory
Scientific Reports (2024)
-
Picture superiority effect in authentication systems for the blind and visually impaired on a smartphone platform
Universal Access in the Information Society (2024)
-
Diminished activation of excitatory neurons in the prelimbic cortex leads to impaired working memory capacity in mice
BMC Biology (2023)
-
The roles of attention, executive function and knowledge in cognitive ageing of working memory
Nature Reviews Psychology (2023)