Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Changing concepts of working memory

Subjects

Abstract

Working memory is widely considered to be limited in capacity, holding a fixed, small number of items, such as Miller's 'magical number' seven or Cowan's four. It has recently been proposed that working memory might better be conceptualized as a limited resource that is distributed flexibly among all items to be maintained in memory. According to this view, the quality rather than the quantity of working memory representations determines performance. Here we consider behavioral and emerging neural evidence for this proposal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evidence from delayed estimation challenging the slot model.
Figure 2: Models of working memory.
Figure 3: Neural correlates of storage in working memory.
Figure 4: Putative neural basis of set size effects in resource models of working memory.
Figure 5: Interpreting the shape and width of working memory error distributions.
Figure 6: Modes of failure in working memory retrieval.
Figure 7: Changing concepts of change detection.

Similar content being viewed by others

References

  1. Baddeley, A. Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4, 829–839 (2003).

    CAS  PubMed  Google Scholar 

  2. Fuster, J.M. Memory in the Cerebral Cortex: An Empirical Approach to Neural Networks in the Human and Nonhuman Primate (MIT Press, 1999).

  3. Miller, G.A. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956).

    CAS  PubMed  Google Scholar 

  4. Cowan, N. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87–114 (2001).

    CAS  PubMed  Google Scholar 

  5. Luck, S.J. & Vogel, E.K. The capacity of visual working memory for features and conjunctions. Nature 390, 279–281 (1997).

    CAS  PubMed  Google Scholar 

  6. Pashler, H. Familiarity and visual change detection. Percept. Psychophys. 44, 369–378 (1988).

    CAS  PubMed  Google Scholar 

  7. Luck, S.J. & Vogel, E.K. Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 17, 391–400 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Wilken, P. & Ma, W.J. A detection theory account of change detection. J. Vis. 4, 1120–1135 (2004).

    PubMed  Google Scholar 

  9. Bays, P.M., Catalao, R.F.G. & Husain, M. The precision of visual working memory is set by allocation of a shared resource. J. Vis. 9, 7 (2009).

    PubMed  Google Scholar 

  10. Gorgoraptis, N., Catalao, R.F., Bays, P.M. & Husain, M. Dynamic updating of working memory resources for visual objects. J. Neurosci. 31, 8502 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bays, P.M. & Husain, M. Dynamic shifts of limited working memory resources in human vision. Science 321, 851–854 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Alvarez, G.A. & Cavanagh, P. The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychol. Sci. 15, 106–111 (2004).

    CAS  PubMed  Google Scholar 

  13. Keshvari, S., van den Berg, R. & Ma, W.J. No evidence for an item limit in change detection. PLoS Comput. Biol. 9, e1002927 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Franconeri, S.L., Alvarez, G.A. & Cavanagh, P. Flexible cognitive resources: competitive content maps for attention and memory. Trends Cogn. Sci. 17, 134–141 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. van den Berg, R., Shin, H., Chou, W.-C., George, R. & Ma, W.J. Variability in encoding precision accounts for visual short-term memory limitations. Proc. Natl. Acad. Sci. USA 109, 8780–8785 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fougnie, D., Suchow, J.W. & Alvarez, G.A. Variability in the quality of visual working memory. Nat. Commun. 3, 1229 (2012).

    PubMed  Google Scholar 

  17. Palmer, J. Attentional limits on the perception and memory of visual information. J. Exp. Psychol. Hum. Percept. Perform. 16, 332–350 (1990).

    CAS  PubMed  Google Scholar 

  18. Zokaei, N., Gorgoraptis, N., Bahrami, B., Bays, P.M. & Husain, M. Precision of working memory for visual motion sequences and transparent motion surfaces. J. Vis. 11, 2 (2011).

    PubMed  Google Scholar 

  19. Zhang, W. & Luck, S.J. Discrete fixed-resolution representations in visual working memory. Nature 453, 233–235 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rademaker, R.L., Tredway, C.H. & Tong, F. Introspective judgments predict the precision and likelihood of successful maintenance of visual working memory. J. Vis. 12, 21 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. Anderson, D.E., Vogel, E.K. & Awh, E. Precision in visual working memory reaches a stable plateau when individual item limits are exceeded. J. Neurosci. 31, 1128–1138 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Buschman, T.J., Siegel, M., Roy, J.E. & Miller, E.K. Neural substrates of cognitive capacity limitations. Proc. Natl. Acad. Sci. USA 108, 11252–11255 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Elmore, L.C. et al. Visual short-term memory compared in rhesus monkeys and humans. Curr. Biol. 21, 975–979 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Heyselaar, E., Johnston, K. & Paré, M. A change detection approach to study visual working memory of the macaque monkey. J. Vis. 11, 11 (2011).

    PubMed  Google Scholar 

  25. Lara, A.H. & Wallis, J.D. Capacity and precision in an animal model of visual short-term memory. J. Vis. 12, 13 (2012).

    PubMed  Google Scholar 

  26. Bays, P.M., Gorgoraptis, N., Wee, N., Marshall, L. & Husain, M. Temporal dynamics of encoding, storage, and reallocation of visual working memory. J. Vis. 11, 6 (2011).

    PubMed  Google Scholar 

  27. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    CAS  PubMed  Google Scholar 

  28. Pertzov, Y., Bays, P.M., Joseph, S. & Husain, M. Rapid forgetting prevented by retrospective attention cues. J. Exp. Psychol. Hum. Percept. Perform. 39, 1224–1231 (2013).

    PubMed  Google Scholar 

  29. Melcher, D. & Piazza, M. The role of attentional priority and saliency in determining capacity limits in enumeration and visual working memory. PLoS ONE 6, e29296 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shao, N. et al. Saccades elicit obligatory allocation of visual working memory. Mem. Cognit. 38, 629–640 (2010).

    PubMed  Google Scholar 

  31. Bisley, J.W. & Goldberg, M.E. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33, 1–21 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Klein, R.M. Inhibition of return. Trends Cogn. Sci. 4, 138–147 (2000).

    CAS  PubMed  Google Scholar 

  33. Shibuya, H. & Bundesen, C. Visual selection from multielement displays: measuring and modeling effects of exposure duration. J. Exp. Psychol. Hum. Percept. Perform. 14, 591–600 (1988).

    CAS  PubMed  Google Scholar 

  34. Mazyar, H., van den Berg, R. & Ma, W.J. Does precision decrease with set size? J. Vis. 12, 10 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. Emrich, S.M. & Ferber, S. Competition increases binding errors in visual working memory. J. Vis. 12, 12 (2012).

    PubMed  Google Scholar 

  36. Bundesen, C., Habekost, T. & Kyllingsbæk, S. A neural theory of visual attention: bridging cognition and neurophysiology. Psychol. Rev. 112, 291–328 (2005).

    PubMed  Google Scholar 

  37. Xu, Y. & Chun, M.M. Dissociable neural mechanisms supporting visual short-term memory for objects. Nature 440, 91–95 (2006).

    CAS  PubMed  Google Scholar 

  38. Todd, J.J. & Marois, R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428, 751–754 (2004).

    CAS  PubMed  Google Scholar 

  39. Linden, D.E.J. et al. Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. Neuroimage 20, 1518–1530 (2003).

    PubMed  Google Scholar 

  40. Vogel, E.K. & Machizawa, M.G. Neural activity predicts individual differences in visual working memory capacity. Nature 428, 748–751 (2004).

    CAS  PubMed  Google Scholar 

  41. Leung, H.C., Seelig, D. & Gore, J.C. The effect of memory load on cortical activity in the spatial working memory circuit. Cogn. Affect. Behav. Neurosci. 4, 553–563 (2004).

    PubMed  Google Scholar 

  42. van Dijk, H., van der Werf, J., Mazaheri, A., Medendorp, W.P. & Jensen, O. Modulations in oscillatory activity with amplitude asymmetry can produce cognitively relevant event-related responses. Proc. Natl. Acad. Sci. USA 107, 900–905 (2010).

    CAS  PubMed  Google Scholar 

  43. Todd, J.J. & Marois, R. Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity. Cogn. Affect. Behav. Neurosci. 5, 144–155 (2005).

    PubMed  Google Scholar 

  44. Luria, R., Sessa, P., Gotler, A., Jolicøeur, P. & Dell'Acqua, R. Visual short-term memory capacity for simple and complex objects. J. Cogn. Neurosci. 22, 496–512 (2010).

    PubMed  Google Scholar 

  45. Machizawa, M.G., Goh, C.C.W. & Driver, J. Human visual short-term memory precision can be varied at will when the number of retained items is low. Psychol. Sci. 23, 554–559 (2012).

    PubMed  Google Scholar 

  46. Reinhart, R.M.G. et al. Homologous mechanisms of visuospatial working memory maintenance in macaque and human: properties and sources. J. Neurosci. 32, 7711–7722 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    CAS  PubMed  Google Scholar 

  48. Wheeler, M.E. & Treisman, A.M. Binding in short-term visual memory. J. Exp. Psychol. Gen. 131, 48–64 (2002).

    PubMed  Google Scholar 

  49. Bays, P.M., Wu, E.Y. & Husain, M. Storage and binding of object features in visual working memory. Neuropsychologia 49, 1622–1631 (2011).

    PubMed  Google Scholar 

  50. Umemoto, A., Drew, T., Ester, E.F. & Awh, E. A bilateral advantage for storage in visual working memory. Cognition 117, 69–79 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Riggall, A.C. & Postle, B.R. The relationship between working memory storage and elevated activity as measured with functional magnetic resonance imaging. J. Neurosci. 32, 12990–12998 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Harrison, S.A. & Tong, F. Decoding reveals the contents of visual working memory in early visual areas. Nature 458, 632–635 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Serences, J.T., Ester, E.F., Vogel, E.K. & Awh, E. Stimulus-specific delay activity in human primary visual cortex. Psychol. Sci. 20, 207–214 (2009).

    PubMed  Google Scholar 

  54. Ester, E.F., Anderson, D.E., Serences, J.T. & Awh, E. A neural measure of precision in visual working memory. J. Cogn. Neurosci. 25, 754–761 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. Emrich, S.M., Riggall, A.C., Larocque, J.J. & Postle, B.R. Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory. J. Neurosci. 33, 6516–6523 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Freeman, J., Brouwer, G.J., Heeger, D.J. & Merriam, E.P. Orientation decoding depends on maps, not columns. J. Neurosci. 31, 4792–4804 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lewis-Peacock, J.A., Drysdale, A.T., Oberauer, K. & Postle, B.R. Neural evidence for a distinction between short-term memory and the focus of attention. J. Cogn. Neurosci. 24, 61–79 (2012).

    PubMed  Google Scholar 

  58. Lisman, J.E. & Idiart, M. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995).

    CAS  PubMed  Google Scholar 

  59. Raffone, A. & Wolters, G. A cortical mechanism for binding in visual working memory. J. Cogn. Neurosci. 13, 766–785 (2001).

    CAS  PubMed  Google Scholar 

  60. Ma, W.J. & Huang, W. No capacity limit in attentional tracking: Evidence for probabilistic inference under a resource constraint. J. Vis. 9, 1–30 (2009).

    PubMed  Google Scholar 

  61. Shafi, M. et al. Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience 146, 1082–1108 (2007).

    CAS  PubMed  Google Scholar 

  62. Seung, H.S. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA 90, 10749–10753 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ma, W.J., Beck, J.M., Latham, P.E. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).

    CAS  PubMed  Google Scholar 

  64. Awh, E. & Jonides, J. Overlapping mechanisms of attention and spatial working memory. Trends Cogn. Sci. 5, 119–126 (2001).

    CAS  PubMed  Google Scholar 

  65. McAdams, C.J. & Maunsell, J.H.R. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Churchland, A.K., Kiani, R. & Shadlen, M.N. Decision-making with multiple alternatives. Nat. Neurosci. 11, 693–702 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Churchland, A.K. et al. Variance as a signature of neural computations during decision making. Neuron 69, 818–831 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wei, Z., Wang, X.J. & Wang, D.H. From distributed resources to limited slots in multiple-item working memory: a spiking network model with normalization. J. Neurosci. 32, 11228–11240 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. van den Berg, R. & Ma, W.J. 'Plateau'-related summary statistics are uninformative for comparing working memory models. Atten. Percept. Psychophys. (in the press).

  70. van den Berg, R., Awh, E. & Ma, W.J. Factorial comparison of working memory models. Psychol. Rev. (in the press).

  71. Girshick, A.R., Landy, M.S. & Simoncelli, E.P. Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nat. Neurosci. 14, 926–932 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Brady, T.F. & Tenenbaum, J.B. A probabilistic model of visual working memory: incorporating higher order regularities into working memory capacity estimates. Psychol. Rev. 120, 85–109 (2013).

    PubMed  Google Scholar 

  73. Bays, P.M. Noise in neural populations accounts for errors in visual working memory. J. Neurosci. (in the press).

  74. Fougnie, D., Asplund, C.L. & Marois, R. What are the units of storage in visual working memory? J. Vis. 10, 27 (2010).

    PubMed  Google Scholar 

  75. Parra, M.A. et al. Short-term memory binding deficits in Alzheimer's disease. Brain 132, 1057–1066 (2009).

    PubMed  Google Scholar 

  76. Brockmole, J.R. & Logie, R.H. Age-related change in visual working memory: a study of 55,753 participants aged 8–75. Front. Psychol. 4, 12 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. Peich, M.-C., Husain, M. & Bays, P.M. Age-related decline of precision and binding in visual working memory. Psychol. Aging 28, 729–743 (2013).

    PubMed  PubMed Central  Google Scholar 

  78. Pertzov, Y. et al. Binding deficits in memory following medial temporal lobe damage in patients with voltage-gated potassium channel complex antibody-associated limbic encephalitis. Brain 136, 2474–2485 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Eng, H.Y., Chen, D. & Jiang, Y. Visual working memory for simple and complex visual stimuli. Psychon. Bull. Rev. 12, 1127–1133 (2005).

    PubMed  Google Scholar 

  80. Keshvari, S., van den Berg, R. & Ma, W.J. Probabilistic computation in human perception under variability in encoding precision. PLoS ONE 7, e40216 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Palmer, J., Verghese, P. & Pavel, M. The psychophysics of visual search. Vision Res. 40, 1227–1268 (2000).

    CAS  PubMed  Google Scholar 

  82. Ma, W.J., Navalpakkam, V., Beck, J.M., Van den Berg, R. & Pouget, A. Behavior and neural basis of near-optimal visual search. Nat. Neurosci. 14, 783–790 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Awh, E., Barton, B. & Vogel, E.K. Visual working memory represents a fixed number of items regardless of complexity. Psychol. Sci. 18, 622–628 (2007).

    PubMed  Google Scholar 

  84. Rouder, J.N., Morey, R., Cowan, N., Morey, C. & Pratte, M. An assessment of fixed-capacity models of visual working memory. Proc. Natl. Acad. Sci. USA 105, 5975–5979 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Brady, T.F. & Alvarez, G.A. Hierarchical encoding in visual working memory: ensemble statistics bias memory for individual items. Psychol. Sci. 22, 384–392 (2011).

    PubMed  Google Scholar 

  86. Orhan, A.E. & Jacobs, R.A. A Probabilistic clustering theory of the organization of visual short-term memory. Psychol. Rev. 120, 297–328 (2013).

    PubMed  Google Scholar 

  87. Dyrholm, M., Kyllingsbaek, S., Espeseth, T. & Bundesen, C. Generalizing parametric models by introducing trial-by-trial parameter variability: The case of TVA. J. Math. Psychol. 55, 416–429 (2011).

    Google Scholar 

  88. Sims, C.R., Jacobs, R.A. & Knill, D.C. An ideal-observer analysis of visual working memory. Psychol. Rev. 119, 807–830 (2012).

    PubMed  PubMed Central  Google Scholar 

  89. Olson, I.R. & Jiang, Y. Is visual short-term memory object based? Rejection of the 'strong-object' hypothesis. Percept. Psychophys. 64, 1055–1067 (2002).

    PubMed  Google Scholar 

  90. Xu, Y. Limitations of object-based feature encoding in visual short-term memory. J. Exp. Psychol. Hum. Percept. Perform. 28, 458–468 (2002).

    PubMed  Google Scholar 

  91. Fougnie, D. & Alvarez, G.A. Object features fail independently in visual working memory: evidence for a probabilistic feature-store model. J. Vis. 11, 3 (2011).

    PubMed  Google Scholar 

  92. Fougnie, D., Cormiea, S.M. & Alvarez, G.A. Object-based benefits without object-based representations. J. Exp. Psychol. Gen. 142, 621–626 (2013).

    PubMed  Google Scholar 

  93. Marshall, L. & Bays, P.M. Obligatory encoding of task-irrelevant features depletes working memory resources. J. Vis. 13, 21 (2013).

    PubMed  PubMed Central  Google Scholar 

  94. Brady, T.F., Konkle, T., Gill, J., Oliva, A. & Alvarez, G.A. Visual long-term memory has the same limit on fidelity as visual working memory. Psychol. Sci. 24, 981–990 (2013).

    PubMed  Google Scholar 

  95. Kumar, S. et al. Resource allocation and prioritization in auditory working memory. Cogn. Neurosci. 4, 12–20 (2013).

    CAS  PubMed  Google Scholar 

  96. Vul, E., Frank, M.C., Alvarez, G.A. & Tenenbaum, J.B. Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model. Adv. Neural Inf. Process. Syst. 22, 1955–1963 (2009).

    Google Scholar 

  97. Holcombe, A.O. & Chen, W.-Y. Exhausting attentional tracking resources with a single fast-moving object. Cognition 123, 218–228 (2012).

    PubMed  Google Scholar 

  98. Chesney, D.L. & Haladjian, H.H. Evidence for a shared mechanism used in multiple-object tracking and subitizing. Atten. Percept. Psychophys. 73, 2457–2480 (2011).

    PubMed  Google Scholar 

  99. Burnett Heyes, S., Zokaei, N., van der Staaij, I., Bays, P.M. & Husain, M. Development of visual working memory precision in childhood. Dev. Sci. 15, 528–539 (2012).

    PubMed  PubMed Central  Google Scholar 

  100. Noack, H., Lövdén, M. & Lindenberger, U. Normal aging increases discriminal dispersion in visuospatial short-term memory. Psychol. Aging 27, 627–637 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. van den Berg for useful discussions and assistance with Figure 5. W.J.M. is supported by award number R01EY020958 from the National Eye Institute and award number W911NF-12-1-0262 from the Army Research Office. P.M.B. and M.H. are supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ji Ma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Husain, M. & Bays, P. Changing concepts of working memory. Nat Neurosci 17, 347–356 (2014). https://doi.org/10.1038/nn.3655

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3655

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing