Normal and abnormal coding of somatosensory stimuli causing pain

Abstract

Noxious stimuli usually cause pain and pain usually arises from noxious stimuli, but exceptions to these apparent truisms are the basis for clinically important problems and provide valuable insight into the neural code for pain. In this Review, we discuss how painful sensations arise. We argue that, although primary somatosensory afferents are tuned to specific stimulus features, natural stimuli often activate more than one type of afferent. Manipulating coactivation patterns can alter perception in ways that argue against each type of afferent acting independently (as expected for strictly labeled lines), suggesting instead that signals conveyed by different types of afferents interact. Deciphering the central circuits that mediate those interactions is critical for explaining the generation and modulation of neural signals that ultimately elicit pain. The advent of genetic and optical dissection techniques promise to dramatically accelerate progress toward this goal, which will facilitate the rational design of future pain therapeutics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Transformation of neural representations.
Figure 2: Inferring central processing steps.
Figure 3: Diverse ways to produce burning pain.
Figure 4: Spinal microcircuitry underlying tactile allodynia associated with neuropathic pain.
Figure 5: Dissection of spinal microcircuits using intersectionally targeted probes and advanced optical methods.

References

  1. 1

    Baxter, D.W. & Olszewski, J. Congenital universal insensitivity to pain. Brain 83, 381–393 (1960).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948).

    Article  Google Scholar 

  3. 3

    Churchland, P.S., Ramachandran, V.S. & Sejnowski, T.J. A critique of pure vision. in Large-Scale Neuronal Theories of the Brain (eds. Koch, C. & Davis, J.L.) 257–270 (MIT Press, 1994).

  4. 4

    Bushnell, M.C. & Apkarian, A.V. Representation of pain in the brain. in Wall and Melzack's Textbook of Pain (eds. McMahon, S.B. & Koltzenburg, M.) 107–124 (Elsevier, 2006).

  5. 5

    Bushnell, M.C., Ceko, M. & Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14, 502–511 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Melzack, R., Wall, P.D. & Ty, T.C. Acute pain in an emergency clinic: latency of onset and descriptor patterns related to different injuries. Pain 14, 33–43 (1982).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Colloca, L., Klinger, R., Flor, H. & Bingel, U. Placebo analgesia: psychological and neurobiological mechanisms. Pain 154, 511–514 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Pouget, A., Beck, J.M., Ma, W.J. & Latham, P.E. Probabilistic brains: knowns and unknowns. Nat. Neurosci. 16, 1170–1178 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Knill, D.C. & Pouget, A. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Friston, K. A theory of cortical responses. Phil. Trans. R. Soc. Lond. B 360, 815–836 (2005).

    Article  Google Scholar 

  11. 11

    Brown, H. & Friston, K.J. Free-energy and illusions: the Cornsweet effect. Front. Psychol. 3, 43 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. 12

    Costigan, M., Scholz, J. & Woolf, C.J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32, 1–32 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Bonica, J.J. History of pain concepts and therapies. in The Management of Pain (ed. Bonica, J.J.) 2–17 (Lea & Febiger, Philadelphia, 1990).

  14. 14

    Perl, E.R. Ideas about pain, a historical view. Nat. Rev. Neurosci. 8, 71–80 (2007).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Kumazawa, T., Mizunura, K. & Kruger, L. eds. The Polymodal Receptor: A Gateway to Pain (Elsevier, 1996).

  16. 16

    Ma, Q. Population coding of somatic sensations. Neurosci. Bull. 28, 91–99 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Ma, Q. Labeled lines meet and talk: population coding of somatic sensations. J. Clin. Invest. 120, 3773–3778 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Prescott, S.A. & Ratté, S. Pain processing by spinal microcircuits: afferent combinatorics. Curr. Opin. Neurobiol. 22, 631–639 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Solomon, S.G. & Lennie, P. The machinery of colour vision. Nat. Rev. Neurosci. 8, 276–286 (2007).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Conway, B.R. Color vision, cones, and color-coding in the cortex. Neuroscientist 15, 274–290 (2009).

    PubMed  Article  Google Scholar 

  21. 21

    Sullivan, S.L., Ressler, K.J. & Buck, L.B. Odorant receptor diversity and patterned gene expression in the mammalian olfactory epithelium. Prog. Clin. Biol. Res. 390, 75–84 (1994).

    CAS  PubMed  Google Scholar 

  22. 22

    Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994).

    CAS  Article  Google Scholar 

  23. 23

    Malnic, B., Hirono, J., Sato, T. & Buck, L.B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Gottfried, J.A. Central mechanisms of odour object perception. Nat. Rev. Neurosci. 11, 628–641 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Craig, A.D. & Bushnell, M.C. The thermal grill illusion: unmasking the burn of cold pain. Science 265, 252–255 (1994).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Craig, A.D. Can the basis for central neuropathic pain be identified by using a thermal grill? Pain 135, 215–216 (2008).

    PubMed  Article  Google Scholar 

  27. 27

    Craig, A.D. Mechanisms of thalamic pain. in Central Neuropathic Pain: Focus on Poststroke Pain (ed. Henry, J.L., Panju, A. & Yashpal, K.) 81–100 (IASP Press, Seattle, 2007).

  28. 28

    Maier, C. et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 150, 439–450 (2010).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Hämäläinen, H., Vartiainen, M., Karvanen, L. & Jarvilehto, T. Paradoxical heat sensations during moderate cooling of the skin. Brain Res. 251, 77–81 (1982).

    PubMed  Article  Google Scholar 

  30. 30

    Yarnitsky, D. & Ochoa, J.L. Release of cold-induced burning pain by block of cold-specific afferent input. Brain 113, 893–902 (1990).

    PubMed  Article  Google Scholar 

  31. 31

    Mackenzie, R.A., Burke, D., Skuse, N.F. & Lethlean, A.K. Fibre function and perception during cutaneous nerve block. J. Neurol. Neurosurg. Psychiatry 38, 865–873 (1975).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Merrington, W.R. & Nathan, P.W. A study of post-ischaemic paraesthesiae. J. Neurol. Neurosurg. Psychiatry 12, 1–18 (1949).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Nathan, P.W. Ischaemic and post-ischaemic numbness and paraesthesiae. J. Neurol. Neurosurg. Psychiatry 21, 12–23 (1958).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Isbister, G.K. & Kiernan, M.C. Neurotoxic marine poisoning. Lancet Neurol. 4, 219–228 (2005).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Vetter, I. et al. Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO J. 31, 3795–3808 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Kobayashi, K. et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with aδ/c-fibers and colocalization with trk receptors. J. Comp. Neurol. 493, 596–606 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Campero, M., Baumann, T.K., Bostock, H. & Ochoa, J.L. Human cutaneous C fibres activated by cooling, heating and menthol. J. Physiol. (Lond.) 587, 5633–5652 (2009).

    CAS  Article  Google Scholar 

  38. 38

    Ochoa, J.L. & Yarnitsky, D. The triple cold syndrome: cold hyperalgesia, cold hypoaesthesia and cold skin in peripheral nerve disease. Brain 117, 185–197 (1994).

    PubMed  Article  Google Scholar 

  39. 39

    Defrin, R., Ohry, A., Blumen, N. & Urca, G. Sensory determinants of thermal pain. Brain 125, 501–510 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Sikand, P., Shimada, S.G., Green, B.G. & LaMotte, R.H. Similar itch and nociceptive sensations evoked by punctate cutaneous application of capsaicin, histamine and cowhage. Pain 144, 66–75 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Bester, H., Chapman, V., Besson, J.M. & Bernard, J.F. Physiological properties of the lamina I spinoparabrachial neurons in the rat. J. Neurophysiol. 83, 2239–2259 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Keller, A.F., Beggs, S., Salter, M.W. & De Koninck, Y. Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol. Pain 3, 27 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. 43

    Miraucourt, L.S., Dallel, R. & Voisin, D.L. Glycine inhibitory dysfunction turns touch into pain through PKCγ interneurons. PLoS ONE 2, e1116 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44

    Ribeiro-da-Silva, A. & De Koninck, Y. Morphological and neurochemical organization of the spinal dorsal horn. in The Science of Pain (ed. Basbaum, A.I. & Bushnell, M.C.) 279–310 (Academic, 2008).

  45. 45

    Ferrini, F. & De Koninck, Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast. 2013, 429815 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46

    Cordero-Erausquin, M. et al. Dorsal horn neurons presynaptic to lamina I spinoparabrachial neurons revealed by transynaptic labeling. J. Comp. Neurol. 517, 601–615 (2009).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Baba, H. et al. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol. Cell. Neurosci. 24, 818–830 (2003).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Torsney, C. & MacDermott, A.B. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J. Neurosci. 26, 1833–1843 (2006).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Lu, Y. et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J. Clin. Invest. 123, 4050–4062 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Gagnon, M. et al. Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat. Med. 19, 1524–1528 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Lavertu, G., Côté, S. & De Koninck, Y. Enhancing K-Cl co-transport restores normal spinothalamic sensory coding in a neuropathic pain model. Brain published online, doi:10.1093/brain/awt334 (24 December 2013).

  52. 52

    Ascoli, G.A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    CAS  Article  Google Scholar 

  53. 53

    Gross, M.K., Dottori, M. & Goulding, M. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34, 535–549 (2002).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Müller, T. et al. The homeodomain factor Lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron 34, 551–562 (2002).

    PubMed  Article  Google Scholar 

  55. 55

    Helms, A.W. & Johnson, J.E. Specification of dorsal spinal cord interneurons. Curr. Opin. Neurobiol. 13, 42–49 (2003).

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Xu, Y. et al. Ontogeny of excitatory spinal neurons processing distinct somatic sensory modalities. J. Neurosci. 33, 14738–14748 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Cheng, L. et al. Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat. Neurosci. 7, 510–517 (2004).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Chen, Z.F. et al. The paired homeodomain protein DRG11 is required for the projection of cutaneous sensory afferent fibers to the dorsal spinal cord. Neuron 31, 59–73 (2001).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Wang, X. et al. Excitatory superficial dorsal horn interneurons are functionally heterogeneous and required for the full behavioral expression of pain and itch. Neuron 78, 312–324 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Huang, M. et al. Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Dev. Biol. 322, 394–405 (2008).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Xu, Y. et al. Tlx1 and Tlx3 coordinate specification of dorsal horn pain-modulatory peptidergic neurons. J. Neurosci. 28, 4037–4046 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Bröhl, D. et al. A transcriptional network coordinately determines transmitter and peptidergic fate in the dorsal spinal cord. Dev. Biol. 322, 381–393 (2008).

    PubMed  Article  CAS  Google Scholar 

  63. 63

    Guo, Z. et al. Tlx1/3 and Ptf1a control the expression of distinct sets of transmitter and peptide receptor genes in the developing dorsal spinal cord. J. Neurosci. 32, 8509–8520 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Polgár, E. et al. Functional differences between neurochemically defined populations f inhibitory interneurons in the rat spinal dorsal horn. Pain 154, 2606–2615 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65

    Dymecki, S.M. & Kim, J.C. Molecular neuroanatomy's “Three Gs”: a primer. Neuron 54, 17–34 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Saito, M. et al. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 19, 746–750 (2001).

    CAS  Article  Google Scholar 

  67. 67

    Buch, T. et al. A Cre inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419–426 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Kim, J.C. et al. Linking genetically defined neurons to behavior through a broadly applicable silencing allele. Neuron 63, 305–315 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Armbruster, B.N., Li, X., Pausch, M.H., Herlitze, S. & Roth, B.L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104, 5163–5168 (2007).

    Article  CAS  Google Scholar 

  70. 70

    Ray, R.S. et al. Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333, 637–642 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Kramer, R.H., Mourot, A. & Adesnik, H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat. Neurosci. 16, 816–823 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72

    Tye, K.M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251–266 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73

    Wickersham, I.R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74

    Mishra, S.K. & Hoon, M.A. The cells and circuitry for itch responses in mice. Science 340, 968–971 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Sun, Y.G. et al. Cellular basis of itch sensation. Science 325, 1531–1534 (2009).

    CAS  Article  Google Scholar 

  76. 76

    Mantyh, P.W. et al. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278, 275–279 (1997).

    CAS  PubMed  Article  Google Scholar 

  77. 77

    Carstens, E.E., Carstens, M.I., Simons, C.T. & Jinks, S.L. Dorsal horn neurons expressing NK-1 receptors mediate scratching in rats. Neuroreport 21, 303–308 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    LeChasseur, Y. et al. A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat. Methods 8, 319–325 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Alivisatos, A.P. et al. Nanotools for neuroscience and brain activity mapping. ACS Nano 7, 1850–1866 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Packer, A.M., Roska, B. & Hausser, M. Targeting neurons and photons for optogenetics. Nat. Neurosci. 16, 805–815 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Dunfield, D. & Haas, K. In vivo single-cell excitability probing of neuronal ensembles in the intact and awake developing Xenopus brain. Nat. Protoc. 5, 841–848 (2010).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83

    Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M. & Keller, P.J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Daou, I. et al. Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J. Neurosci. 33, 18631–18640 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    Kerr, J.N. & Nimmerjahn, A. Functional imaging in freely moving animals. Curr. Opin. Neurobiol. 22, 45–53 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Laffray, S. et al. Adaptive movement compensation for in vivo imaging of fast cellular dynamics within a moving tissue. PLoS ONE 6, e19928 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Bélanger, E. et al. Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy. J. Biomed. Opt. 17, 021107 (2012).

    PubMed  Article  Google Scholar 

  88. 88

    Ghosh, K.K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Ouakli, N., Guevara, E., Dubeau, S., Beaumont, E. & Lesage, F. Laminar optical tomography of the hemodynamic response in the lumbar spinal cord of rats. Opt. Express 18, 10068–10077 (2010).

    CAS  PubMed  Article  Google Scholar 

  90. 90

    Labrakakis, C., Lorenzo, L.E., Bories, C., Ribeiro-da-Silva, A. & De Koninck, Y. Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn. Mol. Pain 5, 24 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91

    Takazawa, T. & MacDermott, A.B. Glycinergic and GABAergic tonic inhibition fine tune inhibitory control in regionally distinct subpopulations of dorsal horn neurons. J. Physiol. (Lond.) 588, 2571–2587 (2010).

    CAS  Article  Google Scholar 

  92. 92

    Zheng, J., Lu, Y. & Perl, E.R. Inhibitory neurones of the spinal substantia gelatinosa mediate interaction of signals from primary afferents. J. Physiol. (Lond.) 588, 2065–2075 (2010).

    CAS  Article  Google Scholar 

  93. 93

    Mesnage, B. et al. Morphological and functional characterization of cholinergic interneurons in the dorsal horn of the mouse spinal cord. J. Comp. Neurol. 519, 3139–3158 (2011).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Hughes, D.I. et al. Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn. J. Physiol. (Lond.) 590, 3927–3951 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants R01 NS047710, P01 NS0272040 and R01 NS086372 to Q.M., NIH grants R01 NS076706 and R21 NS074146 and a New Investigator Award from the Canadian Institutes of Health Research (CIHR) to S.A.P., and CIHR grant MOP 12942 to Y.D.K. and the CIHR Neurophysics program. The idea of using intersectional genetic manipulations to dissect spinal pain circuits has been jointly developed by M. Goulding at the Salk Institute and by Q.M. We thank Sylvain Côté for expert assistance with artwork.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steven A Prescott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prescott, S., Ma, Q. & De Koninck, Y. Normal and abnormal coding of somatosensory stimuli causing pain. Nat Neurosci 17, 183–191 (2014). https://doi.org/10.1038/nn.3629

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing