Visualizing presynaptic function

Abstract

Synaptic communication in the nervous system is initiated by the fusion of synaptic vesicles with the presynaptic plasma membrane and subsequent neurotransmitter release. In the 1980s, this process was characterized by electron microscopy, albeit without the ability to follow processes in living cells. In the last two decades, fluorescence imaging methods have been developed that report synaptic vesicle fusion, endocytosis and recycling. These probes have provided unprecedented insight into synaptic vesicle trafficking in individual synaptic terminals and revealed heterogeneity in recycling pathways as well as synaptic vesicle populations. These methods either take advantage of uptake of fluorescent probes into recycling vesicles or exogenous expression of synaptic vesicle proteins tagged with a pH-sensitive fluorescent marker at regions facing the vesicle lumen. We provide an overview of these methods, with particular emphasis on the challenges associated with their use and the opportunities for future investigations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Optical monitoring of synaptic vesicle recycling using FM dyes.
Figure 2: pHluorin protein tags.
Figure 3: Red-shifted pH sensitive fluorescence proteins enable simultaneous monitoring of multiple functional modalities from individual synaptic terminals.

References

  1. 1

    Alabi, A.A. & Tsien, R.W. Synaptic vesicle pools and dynamics. Cold Spring Harb. Perspect. Biol. 4, a013680 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. 2

    Alabi, A.A. & Tsien, R.W. Perspectives on kiss-and-run: role in exocytosis, endocytosis and neurotransmission. Annu. Rev. Physiol. 75, 393–422 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Fatt, P. & Katz, B. Some observations on biological noise. Nature 166, 597–598 (1950).

    CAS  PubMed  Google Scholar 

  4. 4

    Katz, B. Neural transmitter release: from quantal secretion to exocytosis and beyond. J. Neurocytol. 32, 437–446 (2003).

    CAS  PubMed  Google Scholar 

  5. 5

    Del Castillo, J. & Katz, B. Quantal components of the end-plate potential. J. Physiol. (Lond.) 124, 560–573 (1954).

    CAS  Google Scholar 

  6. 6

    Fatt, P. & Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    CAS  Google Scholar 

  7. 7

    Robertson, J.D. The ultrastructure of a reptilian myoneural junction. J. Biophys. Biochem. Cytol. 2, 381–394 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Del Castillo, J. & Katz, B. Local activity at a depolarized nerve-muscle junction. J. Physiol. (Lond.) 128, 396–411 (1955).

    CAS  Google Scholar 

  9. 9

    Neher, E. & Sakaba, T. Estimating transmitter release rates from postsynaptic current fluctuations. J. Neurosci. 21, 9638–9654 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Heuser, J.E. et al. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol. 81, 275–300 (1979).

    CAS  PubMed  Google Scholar 

  11. 11

    Ceccarelli, B., Hurlbut, W.P. & Mauro, A. Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation. J. Cell Biol. 54, 30–38 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Ceccarelli, B., Hurlbut, W.P. & Mauro, A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 57, 499–524 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Heuser, J.E. & Reese, T.S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Miller, T.M. & Heuser, J.E. Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction. J. Cell Biol. 98, 685–698 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Torri-Tarelli, F., Grohovaz, F., Fesce, R. & Ceccarelli, B. Temporal coincidence between synaptic vesicle fusion and quantal secretion of acetylcholine. J. Cell Biol. 101, 1386–1399 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Torri-Tarelli, F., Haimann, C. & Ceccarelli, B. Coated vesicles and pits during enhanced quantal release of acetylcholine at the neuromuscular junction. J. Neurocytol. 16, 205–214 (1987).

    CAS  PubMed  Google Scholar 

  17. 17

    Dittman, J. & Ryan, T.A. Molecular circuitry of endocytosis at nerve terminals. Annu. Rev. Cell Dev. Biol. 25, 133–160 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Lichtman, J.W., Wilkinson, R.S. & Rich, M.M. Multiple innervation of tonic endplates revealed by activity-dependent uptake of fluorescent probes. Nature 314, 357–359 (1985).

    CAS  PubMed  Google Scholar 

  19. 19

    Betz, W.J. & Bewick, G.S. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200–203 (1992).

    CAS  PubMed  Google Scholar 

  20. 20

    Betz, W.J., Mao, F. & Smith, C.B. Imaging exocytosis and endocytosis. Curr. Opin. Neurobiol. 6, 365–371 (1996).

    CAS  PubMed  Google Scholar 

  21. 21

    Ryan, T.A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713–724 (1993).

    CAS  PubMed  Google Scholar 

  22. 22

    Ryan, T.A., Smith, S.J. & Reuter, H. The timing of synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA 93, 5567–5571 (1996).

    CAS  PubMed  Google Scholar 

  23. 23

    Aravanis, A.M., Pyle, J.L. & Tsien, R.W. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423, 643–647 (2003).

    CAS  PubMed  Google Scholar 

  24. 24

    Harata, N.C., Choi, S., Pyle, J.L., Aravanis, A.M. & Tsien, R.W. Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods. Neuron 49, 243–256 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Kavalali, E.T., Klingauf, J. & Tsien, R.W. Properties of fast endocytosis at hippocampal synapses. Phil. Trans. R. Soc. Lond. B 354, 337–346 (1999).

    CAS  Google Scholar 

  26. 26

    Klingauf, J., Kavalali, E.T. & Tsien, R.W. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394, 581–585 (1998).

    CAS  PubMed  Google Scholar 

  27. 27

    Nonet, M.L. Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions. J. Neurosci. Methods 89, 33–40 (1999).

    CAS  PubMed  Google Scholar 

  28. 28

    Jorgensen, E.M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378, 196–199 (1995).

    CAS  Google Scholar 

  29. 29

    Nonet, M.L. et al. UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. Mol. Biol. Cell 10, 2343–2360 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Zhang, B. et al. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21, 1465–1475 (1998).

    CAS  PubMed  Google Scholar 

  31. 31

    Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    PubMed  Google Scholar 

  32. 32

    Sara, Y., Virmani, T., Deak, F., Liu, X. & Kavalali, E.T. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron 45, 563–573 (2005).

    CAS  PubMed  Google Scholar 

  33. 33

    Chung, C., Barylko, B., Leitz, J., Liu, X. & Kavalali, E.T. Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J. Neurosci. 30, 1363–1376 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Groemer, T.W. & Klingauf, J. Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool. Nat. Neurosci. 10, 145–147 (2007).

    CAS  PubMed  Google Scholar 

  35. 35

    Richards, D.A., Guatimosim, C. & Betz, W.J. Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27, 551–559 (2000).

    CAS  PubMed  Google Scholar 

  36. 36

    Richards, D.A., Guatimosim, C., Rizzoli, S.O. & Betz, W.J. Synaptic vesicle pools at the frog neuromuscular junction. Neuron 39, 529–541 (2003).

    CAS  PubMed  Google Scholar 

  37. 37

    Wu, Y., Yeh, F.L., Mao, F. & Chapman, E.R. Biophysical characterization of styryl dye–membrane interactions. Biophys. J. 97, 101–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Zenisek, D., Steyer, J.A., Feldman, M.E. & Almers, W. A membrane marker leaves synaptic vesicles in milliseconds after exocytosis in retinal bipolar cells. Neuron 35, 1085–1097 (2002).

    CAS  PubMed  Google Scholar 

  39. 39

    Richards, D.A., Bai, J. & Chapman, E.R. Two modes of exocytosis at hippocampal synapses revealed by rate of FM1-43 efflux from individual vesicles. J. Cell Biol. 168, 929–939 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Zhang, Q., Li, Y. & Tsien, R.W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323, 1448–1453 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Murthy, V.N. & Stevens, C.F. Synaptic vesicles retain their identity through the endocytic cycle. Nature 392, 497–501 (1998).

    CAS  PubMed  Google Scholar 

  42. 42

    Pyle, J.L., Kavalali, E.T., Piedras-Renteria, E.S. & Tsien, R.W. Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28, 221–231 (2000).

    CAS  PubMed  Google Scholar 

  43. 43

    Sara, Y., Mozhayeva, M.G., Liu, X. & Kavalali, E.T. Fast vesicle recycling supports neurotransmission during sustained stimulation at hippocampal synapses. J. Neurosci. 22, 1608–1617 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Harata, N., Ryan, T.A., Smith, S.J., Buchanan, J. & Tsien, R.W. Visualizing recycling synaptic vesicles in hippocampal neurons by FM1–43 photoconversion. Proc. Natl. Acad. Sci. USA 98, 12748–12753 (2001).

    CAS  PubMed  Google Scholar 

  45. 45

    Henkel, A.W., Lubke, J. & Betz, W.J. FM1–43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc. Natl. Acad. Sci. USA 93, 1918–1923 (1996).

    CAS  PubMed  Google Scholar 

  46. 46

    Xue, L. et al. Most vesicles in a central nerve terminal participate in recycling. J. Neurosci. 33, 8820–8826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Denker, A. et al. A small pool of vesicles maintains synaptic activity in vivo. Proc. Natl. Acad. Sci. USA 108, 17177–17182 (2011).

    CAS  PubMed  Google Scholar 

  48. 48

    Harata, N. et al. Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci. 24, 637–643 (2001).

    CAS  PubMed  Google Scholar 

  49. 49

    Marra, V. et al. A preferentially segregated recycling vesicle pool of limited size supports neurotransmission in native central synapses. Neuron 76, 579–589 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Schikorski, T. & Stevens, C.F. Morphological correlates of functionally defined synaptic vesicle populations. Nat. Neurosci. 4, 391–395 (2001).

    CAS  PubMed  Google Scholar 

  51. 51

    Fredj, N.B. & Burrone, J. A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nat. Neurosci. 12, 751–758 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. 52

    Kim, S.H. & Ryan, T.A. CDK5 serves as a major control point in neurotransmitter release. Neuron 67, 797–809 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Koenig, J.H. & Ikeda, K. Contribution of active zone subpopulation of vesicles to evoked and spontaneous release. J. Neurophysiol. 81, 1495–1505 (1999).

    CAS  PubMed  Google Scholar 

  54. 54

    Südhof, T.C. The synaptic vesicle cycle revisited. Neuron 28, 317–320 (2000).

    PubMed  Google Scholar 

  55. 55

    Mozhayeva, M.G., Sara, Y., Liu, X. & Kavalali, E.T. Development of vesicle pools during maturation of hippocampal synapses. J. Neurosci. 22, 654–665 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Peng, A., Rotman, Z., Deng, P.Y. & Klyachko, V.A. Differential motion dynamics of synaptic vesicles undergoing spontaneous and activity-evoked endocytosis. Neuron 73, 1108–1115 (2012).

    CAS  PubMed  Google Scholar 

  57. 57

    Park, H., Li, Y. & Tsien, R.W. Influence of synaptic vesicle position on release probability and exocytotic fusion mode. Science 335, 1362–1366 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Bamford, N.S. et al. Repeated exposure to methamphetamine causes long-lasting presynaptic corticostriatal depression that is renormalized with drug readministration. Neuron 58, 89–103 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Stanton, P.K., Heinemann, U. & Muller, W. FM1–43 imaging reveals cGMP-dependent long-term depression of presynaptic transmitter release. J. Neurosci. 21, RC167 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Zakharenko, S.S., Zablow, L. & Siegelbaum, S.A. Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat. Neurosci. 4, 711–717 (2001).

    CAS  PubMed  Google Scholar 

  61. 61

    Kay, A.R. et al. Imaging synaptic activity in intact brain and slices with FM1–43 in C. elegans, lamprey, and rat. Neuron 24, 809–817 (1999).

    CAS  PubMed  Google Scholar 

  62. 62

    Pyle, J.L., Kavalali, E.T., Choi, S. & Tsien, R.W. Visualization of synaptic activity in hippocampal slices with FM1–43 enabled by fluorescence quenching. Neuron 24, 803–808 (1999).

    CAS  PubMed  Google Scholar 

  63. 63

    Hua, Z. et al. v-SNARE composition distinguishes synaptic vesicle pools. Neuron 71, 474–487 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Raingo, J. et al. VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat. Neurosci. 15, 738–745 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Ramirez, D.M., Khvotchev, M., Trauterman, B. & Kavalali, E.T. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 73, 121–134 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Fernández-Alfonso, T. & Ryan, T.A. The kinetics of synaptic vesicle pool depletion at CNS synaptic terminals. Neuron 41, 943–953 (2004).

    PubMed  Google Scholar 

  67. 67

    Sankaranarayanan, S. & Ryan, T.A. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat. Cell Biol. 2, 197–204 (2000).

    CAS  PubMed  Google Scholar 

  68. 68

    Gandhi, S.P. & Stevens, C.F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Voglmaier, S.M. et al. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51, 71–84 (2006).

    CAS  PubMed  Google Scholar 

  71. 71

    Zhu, Y., Xu, J. & Heinemann, S.F. Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron 61, 397–411 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Balaji, J. & Ryan, T.A. Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc. Natl. Acad. Sci. USA 104, 20576–20581 (2007).

    CAS  PubMed  Google Scholar 

  73. 73

    Leitz, J. & Kavalali, E.T. Ca2+ influx slows single synaptic vesicle endocytosis. J. Neurosci. 31, 16318–16326 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Ertunc, M. et al. Fast synaptic vesicle reuse slows the rate of synaptic depression in the CA1 region of hippocampus. J. Neurosci. 27, 341–354 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Ferguson, S.M. et al. A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316, 570–574 (2007).

    CAS  Google Scholar 

  76. 76

    Ariel, P., Hoppa, M.B. & Ryan, T.A. Intrinsic variability in Pv, RRP size, Ca2+ channel repertoire, and presynaptic potentiation in individual synaptic boutons. Front. Synaptic Neurosci. 4, 9 (2012).

    PubMed  Google Scholar 

  77. 77

    Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Li, Y. & Tsien, R.W. pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat. Neurosci. 15, 1047–1053 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Dean, C. et al. Axonal and dendritic synaptotagmin isoforms revealed by a pHluorin-syt functional screen. Mol. Biol. Cell 23, 1715–1727 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Li, H. et al. Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Front. Mol. Neurosci. 4, 34 (2011).

    PubMed  PubMed Central  Google Scholar 

  82. 82

    Li, Z. et al. Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin. Proc. Natl. Acad. Sci. USA 102, 6131–6136 (2005).

    CAS  PubMed  Google Scholar 

  83. 83

    Ng, M. et al. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463–474 (2002).

    CAS  PubMed  Google Scholar 

  84. 84

    Tabares, L. et al. Monitoring synaptic function at the neuromuscular junction of a mouse expressing synaptopHluorin. J. Neurosci. 27, 5422–5430 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Wienisch, M. & Klingauf, J. Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat. Neurosci. 9, 1019–1027 (2006).

    CAS  PubMed  Google Scholar 

  86. 86

    Atluri, P.P. & Ryan, T.A. The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals. J. Neurosci. 26, 2313–2320 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Andreae, L.C., Fredj, N.B. & Burrone, J. Independent vesicle pools underlie different modes of release during neuronal development. J. Neurosci. 32, 1867–1874 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Hua, Y. et al. A readily retrievable pool of synaptic vesicles. Nat. Neurosci. 14, 833–839 (2011).

    CAS  PubMed  Google Scholar 

  89. 89

    Sames, D., Dunn, M., Karpowicz, R.J. Jr. & Sulzer, D. Visualizing neurotransmitter secretion at individual synapses. ACS Chem. Neurosci. 4, 648–651 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    CAS  Google Scholar 

  91. 91

    Boyken, J. et al. Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. Neuron 78, 285–297 (2013).

    CAS  PubMed  Google Scholar 

  92. 92

    Micheva, K.D. & Smith, S.J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Watanabe, S. et al. Protein localization in electron micrographs using fluorescence nanoscopy. Nat. Methods 8, 80–84 (2011).

    CAS  PubMed  Google Scholar 

  95. 95

    Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    CAS  PubMed  Google Scholar 

  96. 96

    Liu, K.S. et al. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science 334, 1565–1569 (2011).

    CAS  PubMed  Google Scholar 

  97. 97

    Burette, A.C. et al. Electron tomographic analysis of synaptic ultrastructure. J. Comp. Neurol. 520, 2697–2711 (2012).

    PubMed  Google Scholar 

  98. 98

    Chen, X., Winters, C.A. & Reese, T.S. Life inside a thin section: tomography. J. Neurosci. 28, 9321–9327 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Hayashi, M. et al. Cell- and stimulus-dependent heterogeneity of synaptic vesicle endocytic recycling mechanisms revealed by studies of dynamin 1-null neurons. Proc. Natl. Acad. Sci. USA 105, 2175–2180 (2008).

    CAS  PubMed  Google Scholar 

  100. 100

    Rose, T., Schoenenberger, P., Jezek, K. & Oertner, T.G. Developmental refinement of vesicle cycling at Schaffer collateral synapses. Neuron 77, 1109–1121 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of Kavalali and Jorgensen laboratories for insightful discussions. This work is supported by grants from the US National Institutes of Health (MH066198 to E.T.K. and NS034307 to E.M.J.). E.M.J. receives funding from the Howard Hughes Medical Institute.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ege T Kavalali or Erik M Jorgensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kavalali, E., Jorgensen, E. Visualizing presynaptic function. Nat Neurosci 17, 10–16 (2014). https://doi.org/10.1038/nn.3578

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing