Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Visualizing presynaptic function

Abstract

Synaptic communication in the nervous system is initiated by the fusion of synaptic vesicles with the presynaptic plasma membrane and subsequent neurotransmitter release. In the 1980s, this process was characterized by electron microscopy, albeit without the ability to follow processes in living cells. In the last two decades, fluorescence imaging methods have been developed that report synaptic vesicle fusion, endocytosis and recycling. These probes have provided unprecedented insight into synaptic vesicle trafficking in individual synaptic terminals and revealed heterogeneity in recycling pathways as well as synaptic vesicle populations. These methods either take advantage of uptake of fluorescent probes into recycling vesicles or exogenous expression of synaptic vesicle proteins tagged with a pH-sensitive fluorescent marker at regions facing the vesicle lumen. We provide an overview of these methods, with particular emphasis on the challenges associated with their use and the opportunities for future investigations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical monitoring of synaptic vesicle recycling using FM dyes.
Figure 2: pHluorin protein tags.
Figure 3: Red-shifted pH sensitive fluorescence proteins enable simultaneous monitoring of multiple functional modalities from individual synaptic terminals.

Similar content being viewed by others

References

  1. Alabi, A.A. & Tsien, R.W. Synaptic vesicle pools and dynamics. Cold Spring Harb. Perspect. Biol. 4, a013680 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Alabi, A.A. & Tsien, R.W. Perspectives on kiss-and-run: role in exocytosis, endocytosis and neurotransmission. Annu. Rev. Physiol. 75, 393–422 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Fatt, P. & Katz, B. Some observations on biological noise. Nature 166, 597–598 (1950).

    Article  CAS  PubMed  Google Scholar 

  4. Katz, B. Neural transmitter release: from quantal secretion to exocytosis and beyond. J. Neurocytol. 32, 437–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Del Castillo, J. & Katz, B. Quantal components of the end-plate potential. J. Physiol. (Lond.) 124, 560–573 (1954).

    Article  CAS  Google Scholar 

  6. Fatt, P. & Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    CAS  Google Scholar 

  7. Robertson, J.D. The ultrastructure of a reptilian myoneural junction. J. Biophys. Biochem. Cytol. 2, 381–394 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Del Castillo, J. & Katz, B. Local activity at a depolarized nerve-muscle junction. J. Physiol. (Lond.) 128, 396–411 (1955).

    Article  CAS  Google Scholar 

  9. Neher, E. & Sakaba, T. Estimating transmitter release rates from postsynaptic current fluctuations. J. Neurosci. 21, 9638–9654 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heuser, J.E. et al. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol. 81, 275–300 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Ceccarelli, B., Hurlbut, W.P. & Mauro, A. Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation. J. Cell Biol. 54, 30–38 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ceccarelli, B., Hurlbut, W.P. & Mauro, A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 57, 499–524 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heuser, J.E. & Reese, T.S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller, T.M. & Heuser, J.E. Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction. J. Cell Biol. 98, 685–698 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Torri-Tarelli, F., Grohovaz, F., Fesce, R. & Ceccarelli, B. Temporal coincidence between synaptic vesicle fusion and quantal secretion of acetylcholine. J. Cell Biol. 101, 1386–1399 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Torri-Tarelli, F., Haimann, C. & Ceccarelli, B. Coated vesicles and pits during enhanced quantal release of acetylcholine at the neuromuscular junction. J. Neurocytol. 16, 205–214 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Dittman, J. & Ryan, T.A. Molecular circuitry of endocytosis at nerve terminals. Annu. Rev. Cell Dev. Biol. 25, 133–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Lichtman, J.W., Wilkinson, R.S. & Rich, M.M. Multiple innervation of tonic endplates revealed by activity-dependent uptake of fluorescent probes. Nature 314, 357–359 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Betz, W.J. & Bewick, G.S. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200–203 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Betz, W.J., Mao, F. & Smith, C.B. Imaging exocytosis and endocytosis. Curr. Opin. Neurobiol. 6, 365–371 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Ryan, T.A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713–724 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Ryan, T.A., Smith, S.J. & Reuter, H. The timing of synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA 93, 5567–5571 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aravanis, A.M., Pyle, J.L. & Tsien, R.W. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423, 643–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Harata, N.C., Choi, S., Pyle, J.L., Aravanis, A.M. & Tsien, R.W. Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods. Neuron 49, 243–256 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Kavalali, E.T., Klingauf, J. & Tsien, R.W. Properties of fast endocytosis at hippocampal synapses. Phil. Trans. R. Soc. Lond. B 354, 337–346 (1999).

    Article  CAS  Google Scholar 

  26. Klingauf, J., Kavalali, E.T. & Tsien, R.W. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394, 581–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Nonet, M.L. Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions. J. Neurosci. Methods 89, 33–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Jorgensen, E.M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378, 196–199 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Nonet, M.L. et al. UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. Mol. Biol. Cell 10, 2343–2360 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, B. et al. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21, 1465–1475 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  PubMed  Google Scholar 

  32. Sara, Y., Virmani, T., Deak, F., Liu, X. & Kavalali, E.T. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron 45, 563–573 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Chung, C., Barylko, B., Leitz, J., Liu, X. & Kavalali, E.T. Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J. Neurosci. 30, 1363–1376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Groemer, T.W. & Klingauf, J. Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool. Nat. Neurosci. 10, 145–147 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Richards, D.A., Guatimosim, C. & Betz, W.J. Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27, 551–559 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Richards, D.A., Guatimosim, C., Rizzoli, S.O. & Betz, W.J. Synaptic vesicle pools at the frog neuromuscular junction. Neuron 39, 529–541 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Wu, Y., Yeh, F.L., Mao, F. & Chapman, E.R. Biophysical characterization of styryl dye–membrane interactions. Biophys. J. 97, 101–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zenisek, D., Steyer, J.A., Feldman, M.E. & Almers, W. A membrane marker leaves synaptic vesicles in milliseconds after exocytosis in retinal bipolar cells. Neuron 35, 1085–1097 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Richards, D.A., Bai, J. & Chapman, E.R. Two modes of exocytosis at hippocampal synapses revealed by rate of FM1-43 efflux from individual vesicles. J. Cell Biol. 168, 929–939 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Q., Li, Y. & Tsien, R.W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323, 1448–1453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Murthy, V.N. & Stevens, C.F. Synaptic vesicles retain their identity through the endocytic cycle. Nature 392, 497–501 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Pyle, J.L., Kavalali, E.T., Piedras-Renteria, E.S. & Tsien, R.W. Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28, 221–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Sara, Y., Mozhayeva, M.G., Liu, X. & Kavalali, E.T. Fast vesicle recycling supports neurotransmission during sustained stimulation at hippocampal synapses. J. Neurosci. 22, 1608–1617 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harata, N., Ryan, T.A., Smith, S.J., Buchanan, J. & Tsien, R.W. Visualizing recycling synaptic vesicles in hippocampal neurons by FM1–43 photoconversion. Proc. Natl. Acad. Sci. USA 98, 12748–12753 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Henkel, A.W., Lubke, J. & Betz, W.J. FM1–43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc. Natl. Acad. Sci. USA 93, 1918–1923 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xue, L. et al. Most vesicles in a central nerve terminal participate in recycling. J. Neurosci. 33, 8820–8826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Denker, A. et al. A small pool of vesicles maintains synaptic activity in vivo. Proc. Natl. Acad. Sci. USA 108, 17177–17182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harata, N. et al. Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci. 24, 637–643 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Marra, V. et al. A preferentially segregated recycling vesicle pool of limited size supports neurotransmission in native central synapses. Neuron 76, 579–589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schikorski, T. & Stevens, C.F. Morphological correlates of functionally defined synaptic vesicle populations. Nat. Neurosci. 4, 391–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Fredj, N.B. & Burrone, J. A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nat. Neurosci. 12, 751–758 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kim, S.H. & Ryan, T.A. CDK5 serves as a major control point in neurotransmitter release. Neuron 67, 797–809 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koenig, J.H. & Ikeda, K. Contribution of active zone subpopulation of vesicles to evoked and spontaneous release. J. Neurophysiol. 81, 1495–1505 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Südhof, T.C. The synaptic vesicle cycle revisited. Neuron 28, 317–320 (2000).

    Article  PubMed  Google Scholar 

  55. Mozhayeva, M.G., Sara, Y., Liu, X. & Kavalali, E.T. Development of vesicle pools during maturation of hippocampal synapses. J. Neurosci. 22, 654–665 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peng, A., Rotman, Z., Deng, P.Y. & Klyachko, V.A. Differential motion dynamics of synaptic vesicles undergoing spontaneous and activity-evoked endocytosis. Neuron 73, 1108–1115 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Park, H., Li, Y. & Tsien, R.W. Influence of synaptic vesicle position on release probability and exocytotic fusion mode. Science 335, 1362–1366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bamford, N.S. et al. Repeated exposure to methamphetamine causes long-lasting presynaptic corticostriatal depression that is renormalized with drug readministration. Neuron 58, 89–103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stanton, P.K., Heinemann, U. & Muller, W. FM1–43 imaging reveals cGMP-dependent long-term depression of presynaptic transmitter release. J. Neurosci. 21, RC167 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zakharenko, S.S., Zablow, L. & Siegelbaum, S.A. Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat. Neurosci. 4, 711–717 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Kay, A.R. et al. Imaging synaptic activity in intact brain and slices with FM1–43 in C. elegans, lamprey, and rat. Neuron 24, 809–817 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Pyle, J.L., Kavalali, E.T., Choi, S. & Tsien, R.W. Visualization of synaptic activity in hippocampal slices with FM1–43 enabled by fluorescence quenching. Neuron 24, 803–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Hua, Z. et al. v-SNARE composition distinguishes synaptic vesicle pools. Neuron 71, 474–487 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Raingo, J. et al. VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat. Neurosci. 15, 738–745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ramirez, D.M., Khvotchev, M., Trauterman, B. & Kavalali, E.T. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 73, 121–134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fernández-Alfonso, T. & Ryan, T.A. The kinetics of synaptic vesicle pool depletion at CNS synaptic terminals. Neuron 41, 943–953 (2004).

    Article  PubMed  Google Scholar 

  67. Sankaranarayanan, S. & Ryan, T.A. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat. Cell Biol. 2, 197–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Gandhi, S.P. & Stevens, C.F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Voglmaier, S.M. et al. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51, 71–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Zhu, Y., Xu, J. & Heinemann, S.F. Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron 61, 397–411 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Balaji, J. & Ryan, T.A. Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc. Natl. Acad. Sci. USA 104, 20576–20581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Leitz, J. & Kavalali, E.T. Ca2+ influx slows single synaptic vesicle endocytosis. J. Neurosci. 31, 16318–16326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ertunc, M. et al. Fast synaptic vesicle reuse slows the rate of synaptic depression in the CA1 region of hippocampus. J. Neurosci. 27, 341–354 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ferguson, S.M. et al. A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316, 570–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Ariel, P., Hoppa, M.B. & Ryan, T.A. Intrinsic variability in Pv, RRP size, Ca2+ channel repertoire, and presynaptic potentiation in individual synaptic boutons. Front. Synaptic Neurosci. 4, 9 (2012).

    PubMed  Google Scholar 

  77. Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, Y. & Tsien, R.W. pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat. Neurosci. 15, 1047–1053 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dean, C. et al. Axonal and dendritic synaptotagmin isoforms revealed by a pHluorin-syt functional screen. Mol. Biol. Cell 23, 1715–1727 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, H. et al. Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Front. Mol. Neurosci. 4, 34 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Li, Z. et al. Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin. Proc. Natl. Acad. Sci. USA 102, 6131–6136 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ng, M. et al. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Tabares, L. et al. Monitoring synaptic function at the neuromuscular junction of a mouse expressing synaptopHluorin. J. Neurosci. 27, 5422–5430 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wienisch, M. & Klingauf, J. Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat. Neurosci. 9, 1019–1027 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Atluri, P.P. & Ryan, T.A. The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals. J. Neurosci. 26, 2313–2320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Andreae, L.C., Fredj, N.B. & Burrone, J. Independent vesicle pools underlie different modes of release during neuronal development. J. Neurosci. 32, 1867–1874 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hua, Y. et al. A readily retrievable pool of synaptic vesicles. Nat. Neurosci. 14, 833–839 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Sames, D., Dunn, M., Karpowicz, R.J. Jr. & Sulzer, D. Visualizing neurotransmitter secretion at individual synapses. ACS Chem. Neurosci. 4, 648–651 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Boyken, J. et al. Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. Neuron 78, 285–297 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Micheva, K.D. & Smith, S.J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Watanabe, S. et al. Protein localization in electron micrographs using fluorescence nanoscopy. Nat. Methods 8, 80–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Liu, K.S. et al. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science 334, 1565–1569 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Burette, A.C. et al. Electron tomographic analysis of synaptic ultrastructure. J. Comp. Neurol. 520, 2697–2711 (2012).

    Article  PubMed  Google Scholar 

  98. Chen, X., Winters, C.A. & Reese, T.S. Life inside a thin section: tomography. J. Neurosci. 28, 9321–9327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hayashi, M. et al. Cell- and stimulus-dependent heterogeneity of synaptic vesicle endocytic recycling mechanisms revealed by studies of dynamin 1-null neurons. Proc. Natl. Acad. Sci. USA 105, 2175–2180 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rose, T., Schoenenberger, P., Jezek, K. & Oertner, T.G. Developmental refinement of vesicle cycling at Schaffer collateral synapses. Neuron 77, 1109–1121 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of Kavalali and Jorgensen laboratories for insightful discussions. This work is supported by grants from the US National Institutes of Health (MH066198 to E.T.K. and NS034307 to E.M.J.). E.M.J. receives funding from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ege T Kavalali or Erik M Jorgensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavalali, E., Jorgensen, E. Visualizing presynaptic function. Nat Neurosci 17, 10–16 (2014). https://doi.org/10.1038/nn.3578

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3578

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing